繊維学会誌

特集〈九州大学の繊維・高分子研究〉
東京農工大学大学院 生物システム応用科学府
生物機能システム科学専攻 物質機能設計分野
荻野 研究室（荻野 賢司 教授、兼橋 眞二 特任助教）
〒184-8588 小金井市中町2-24-16 TEL&FAX: 042-388-7404
kogino@cc.tuat.ac.jp http://web.tuat.ac.jp/~oginolab/

研究分野: 有機材料化学 高分子化学
キーワード: 特殊構造ポリマー 有機半導体 フォトリフラクティブ材料

概要
多機能多相系有機材料を指向したブロックやグラフト共重合体の設計合成を行っている。ポリマーの一次構造を制御することで、ミクロ相分離構造に代表される多相な高次構造を形成させ、それに伴う高分子材料の高機能化、高性能化を目指しています。特に有機半導体関連の材料を研究対象としています。

有機半導体（光導電性材料）のナノ構造制御の必要性

高性能化に伴う材料への要求
・単一相系から多相系（機能分離型）
・アモルファスから規則性（移動度の向上）

応用例
・電子写真
・有機EL素子
・有機トランジスタ
・光電変換素子
・フォトリフラクティブ素子 等

ナノ構造制御の手法

グラフト、ブロック共重合体

自己組織化

機能の創り込み（多機能多相系材料）

タック共重合体テンプレートを用いて作製したドット状ポリアニリン

ポリチオフェン系ブロック共重合体薄膜

http://achem.okayama-u.ac.jp/polymer/
http://www.ecm.okayama-u.ac.jp/polymer/

TEL 086-251-8103
E-mail tuchida@cc.okayama-u.ac.jp
岡山大学高分子系新素材研究グループ
持続的資源循環型社会へ資する高性能芳香族高分子材料の開発

持続可能な資源循環型社会の構築を目指し、再生可能な非可食性バイオマスを原料とした高性能芳香族高分子材料を開発します。さらにこれまで困難であった高性能芳香族高分子のナノファイバー化を、自己組織化（結晶化）を利用した独自の作製法で確立します。両研究の相乗効果により、究極の資源利用効率化社会を目指します。

キーワード：バイオマス、コンポジット、ナノファイバー、高次構造

新素材の開発
・共同研究の推進
・実用化

中空微粒子
微粒子
ウィスカー
リボン
らせんリボン

フィラー

バイオマス

スーパーエンプラ
ポリエステル
ポリエーテルケトン
アラミド

ナノファイバーマット
高性能複合体

高次構造フィブリ

コンポジット
CNT

ニーズの把握
と社会還元

高性能レジン

高性能エラストマー

バイオプラスチック

モノマー合成

高分子合成

要素技術

構造解析

結晶化（相分離）

自然科学研究科 应用化学専攻 高分子科学専攻
http://achem.okayama-u.ac.jp/polymer/

環境科学専攻 環境高分子材料科学研究室
http://www.ecm.okayama-u.ac.jp/polymer/

連絡先：岡山大学 内田哲也 TEL：086-251-8103 E-mail：tuchida@cc.okayama-u.ac.jp
つぎは、どんな未来に化けようか。

ミラバケッソを知っていますか？それは、ミラにパケる新素材。
世のため人のためになる新しい価値をもった製品のこと。
私たちは、これまでもたくさんのミラバケッソを創ってきました。
その始まりは、国産技術による初の合成繊維「ビニロン」とその原料樹脂「ポバール」。
そして、現在進行形のミラバケッソも、耐熱性ポリアミド樹脂（ジェネスタ）、
アクリル系熱可塑性エラストマー（クラリティ）など、どちらもクラレだけの
オンリーワン製品です。ミラバケッソの1つ1つが、どんな未来に化けていくの。
創っている私たちでさえ・・・うん、楽しみです。

株式会社クラレ
〒110-8115 東京都千代田区大手町1-13 大手センタービル TEL:03-6701-1000（代表） www.kuraray.co.jp

未来に化ける新素材
業界待望の入門書！！
JTCCの繊維技術士陣15名による「せんい」の必携書
せんいの基礎講座

監修：一般社団法人 繊 維 学 会
編集：一般社団法人 日本繊維技術士センター（JTCC）
発行：株式会社 繊 維 社 企画出版
https://www.sen-i.co.jp
体裁：A5判 428ページ カバー巻き
定価：本体3,000円 + 税

本書はタイトルを「せんい」とひらがなで表現し、「基礎講座」と銘打っていることからわかるとおり、「せんい」を初めて学ぶ方々を意識して執筆されている。一方、「せんい」の分野は川上から川下まで幅広く、自分の専門領域に関する知識はあくまでも、少し離れた領域について十分な基礎知識をもつことは、実は容易ではない。このような苦労を感じている中堅、あるいはベテランの方々にも、本書は本当に役に立つと自信を持って推薦することができる。端から端まで読み通しても、案内を活用して辞書的に行っても、とにかくポイントを外さずに本当に必要な知識を得ることのできる良書である。

一般社団法人 繊 維 学 会
会長 齊谷 雄士

「発刊にあたって」より（抜粋）
繊維産業に従事している方々や繊維について学ぶ学生の皆様が、本書を通じて、繊維および繊維製品について系統的に広く学んでいただき、繊維技術を理解いただくことはもちろんです。繊維産業のグローバルな成長に伴い、繊維産業分野における新しい革新的なヒントを手に入れなければならず、この上ない喜びです。

一般社団法人 日本繊維技術士センター（JTCC）
理事長 内塚 直夫

ホームページリニューアル
繊維技術データベース開始しました！！
入門・教育用に、新商品・新技術開発にご活用ください。
世界唯一の粉粒体総合分析機器メーカー マイクロトラック・ベル
信頼のブランドで最適な評価装置をご提案します

世界最高峰の吸着装置
高精度ガス／蒸気吸着量測定装置
BELSORP-max II
"膜" サンプルを非破壊で測定可能な膜成形体吸着測定機能（オプション）を搭載可能

仕様
- 呼吸率 3検体、最大4検体の同時測定でさらにハイレベルな測定へと進化
- ガス導入量変更機能（Gas Dosing Optimization）を新搭載。
- 過去の測定データを利用して測定条件を自動で最適化
- 高速析気ラインとバルブのアクティブ制御により測定時間を大幅短縮
- サンプルベース連続測定（AFSM）による高精度測定
- 前処理から測定まで完全自動測定（オプション）測定前の液体蒸発の注入を自動化し、シールレス測定を実現

仕様
- 測定範囲：比表面積：0.01m²/g以上（N₂）、0.0005m²/g以上（Kr）
- 粒子分布：0.35～50nm（直径）

膜・フィルター等の貫通細孔分布評価
貫通細孔分布／ガス透過性測定装置
Poroluxシリーズ

仕様
- パルストライプト法により、セパレータ・フィルター・膜・不織布などの貫通孔分布とガス透過性を評価可能
- 压力スキャット法（Porolux1000）、圧力センサーフ法（Porolux500、1000）により目的にあった高精度測定が可能
- 世界で唯一の3種類のファーストボールポイント試験方法を用意（Porolux1000）
- サイズの異なるサンプルポタンを標準で3種類、試料に合わせてワンタッチで切り替え可能（Porolux1000）
- 水洗を使用せずに、安全に測定可能

仕様
- 粒子配分範囲：0.022～300μm相当直径（～50μm）※混合液による
- 压力範囲：0.0001～35bar
- 流量範囲：0～2000L/min AirまたはN₂
- サンプルホルダー規格：13.25、47mmφ
- 質量：30kg
- Porolux1000の仕様です

分散性評価を高濃度で実現！
滴定機関付き流動電位測定装置
Stabino

仕様
- 液中粒子の流動電位を測定することで、粒子の界面粘度電位を評価
- スピードい測定が可能な測定可能（約1分間）
- アニオン／カチオン滴定で簡易に等電点を測定
- pH滴定、高分子ケール滴定、及び塩酸滴定が可能
- 粒子径分布測定装置ナノトラックシリーズとの組合せによりナノトレンポンと
- 粒子径分布測定がスピーディーに測定可能

仕様
- 測定範囲：流動電位：±3,000～±3,000mV
 （ゼータ電位相当：200～2000mV）

マイクロトラック・ベル株式会社
〒559-0031 大阪市住之江区港東3丁目2番52号 TEL: 06-7166-2161（代表）

大阪営業所
TEL:06-7166-2162

東京営業所
TEL:03-6756-7391

名古屋営業所
TEL:052-228-6020

www.microtrac-bel.com
E-mail: ad.ptycle@microtracbel.com
サーモウェーブアナライザTA

XYZ方向の熱拡散率を連続測定
非接触で高精度・高密度な測定を実現！

レーザーフラッシュ法との比較

- 私たちが周囲加熱放射測定法にこだわる理由

> 当社が標準的な
> 周期加熱放射測定法
> でも一般的な
> レーザーフラッシュ法

光による周囲加熱
放射方法
光によるパルス加熱

12

2

Z.方向温度に対する信頼性の変化
XY.方向温度に対する信頼性の変化
測定方針と
得られる信頼
Z.方向周辺温度に対する温度分布のカーブ

ピンポイントで刻んだ断面を測定
（1点の測定精度±σ 500μm）

測定範囲
試料全体の物性値を
平均して算出

ピノポイントで刻んだ断面を測定
試料全体の物性値を
平均して算出

20mm以上の大きさがあれば
外周は自由
試料形状
放置に依存

結果が少々、一般的な材料に差がある
平均化が不可
βは材料の制限がある

- ピノポイント測定ができる
- 同一試料の測定が可能
- 優れた測定が可能
- 線形の測定が可能
- ピノポイント測定ができる

こんな材料も測定できます！
- 碳素繊維強化樹脂（CFRP）
- ナノセルロース／ファイバー
- グラファイトシート
- 放熱塗料
- 繊維状材料
- フィルム系材料
- カーボンのナノチューブ

異方性評価や欠陥検査
分布測定で均質性を可視化！
幅広い測定レンジをカバー
〜有機フィルムからダイヤモンドまで〜

ナノセルロース（不織シート）の熱伝導率

熱的には... ブラックヒットよりも熱に強く、熱伝導率が高いと言われています。

Adapted with permission from Uetani, K.; Okada, T.; Oyama, H.T. Biomacromolecules 2015, 16, 2220-2227. Copyright 2015 American Chemical Society.

製品に関するお問い合わせ
029-825-2620 平日9〜17時

メールでのお問い合わせ
info@btl-hrd.jp 24時間受付

株式会社ベテル ハドソン研究所
〒300-0036 茨城県土浦市大和町19-3 ウララ3ビル7階 ☎ 029-825-2620 FAX 029-307-8451
〒364-0051 大阪府枚方市豊栄町1-18 エクレート英江ビル403号 ☎ 06-6155-5254（FAX兼用）
ナノファイバー
プロダクションシステム
for Lab
卓上型エレクトロスピニング装置

種々のポリマーのカスタマイズを必要とするご研究者様が求めるシンプルで操作性に優れたLab機を実現しました。
本機はマルチノズルタイプの卓上型エレクトロスピニング装置です。
最大300mm幅の基材に対し、巻出し巻き取り機構を備えることで連続的なナノファイバー不織布を製造することが可能です。

主な特徴
＊卓上タイプで扱いやすく操作性に優れています
＊紡糸はマルチノズルスイング方式を採用し、ノズル数、間隔、スイング幅、速度及び送り速度を可変することにより目的に沿った柔軟な設定が可能です
＊ノズル方式により繊維径と膜の均一性が高く、さらに紡糸方向を下から上にすることで、液垂れなどによる成膜物への汚れの心配がありません

その他の取扱製品
＊ナノファイバーフィルター採用「アエルマスク」販売
＊ナノファイバー不織布製造量産請負
＊ナノファイバー関連商品・共同開発

販売元
株式会社ナノア
東京都立川市柴崎町2-5-3
URL http://www.n-nanoah.com/
お問合せ先：042-512-8002 info@n-nanoah.jp

開発・製造元
株式会社ナファイア
長野県上田市常田3-15-2
信州大学繊維学部FII棟内4F
URL http://www.nafias.jp
延伸冷却加熱ステージ

温度範囲：−100〜350°C/荷重レンジ：0.1 〜 200N
配向結晶化観察・フラグメントーション試験に最適!!

ご使用の顕微鏡へ簡単にセットできます！

【主な仕様】
■ 温度範囲：−100°C 〜 350°C
■ ロードセル：200N または 20N
■ 試料サイズ：幅 7mm 以下 × 厚さ 2mm 以下 × 長さ 26mm 以上

【観察例】PET フィルムを延伸した時の SAXS パターン変化

未延伸状態では散乱曲線は単調に減少関数ですが、60%延伸の状態では配向結晶による長周期ビーグが延伸方向に表れ、更に延伸を進めると微結晶の延伸方向への配向は進み、同時に中心付近にポアドの発生に伴うストリークも観察され、フィルムの力学特性を決定する構造パラメーターを様々な延伸条件に対して容易に評価する事が可能となります。
柔軟面用

連続接触圧測定器

- エアパック式 -
柔らかい面の接触間に袋を介し、エアを封じ込め圧力を計測
その熱影響は、水圧校正にて極めて少ないことを確認

用途
- 接触圧
- 着圧
- 体圧
- 拘束圧
- 衣服圧
- 被服圧
- 接触力
- 締付
- 座圧
- 柔軟性
- 風圧
- 水圧
- 緩和変化
- 把持
- 節変形
- 動作解析
- 節負荷
- 皮膚硬度
- 靴周辺圧
- 面分布圧
- ポイント圧
- 他機器校正
- 機器組込

生体、ダミー（硬い面）実用対応

特許
空気封入式（多点対応）接触圧計測法／特許第5601489号
円筒拡張接触圧校正法／特許第5522337号
組込型接触圧受圧法／特許第5435319号

株式会社 エイエムアイ・テクノ
〒160-0023 東京都新宿区西新宿 3-5-3-1313
http://www.ami-tec.co.jp tel 03-5339-7417 E-mail: ami-tec@m2.pbc.ne.jp
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
<th>著者</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>時評</td>
<td>日本の繊維産地について考える</td>
<td>松田 正夫</td>
<td>P-189</td>
</tr>
<tr>
<td>特集</td>
<td>(九州大学の繊維・高分子研究)</td>
<td></td>
<td>P-190</td>
</tr>
<tr>
<td></td>
<td>高原 淳・犬束 学・織田ゆか里・川口 大輔・北岡 卓也・小椎尾 謙・近藤 哲男</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>春藤 淳臣・高田 見彦・高橋 良彰・高原 修・宮 田中 敬二・谷口 育雄</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>植垣 勇次・平井 智康・藤ヶ谷剛彦・松野 尊生・横田 慎吾</td>
<td></td>
<td></td>
</tr>
<tr>
<td>繊維学会創立70周年記念連載</td>
<td>(技術が支えた日本の繊維産業－生産・販売・商品開発の歩み－44)</td>
<td>松下 義弘</td>
<td>P-218</td>
</tr>
<tr>
<td></td>
<td>繊維産地の盛衰(14) 綿織物産地の発展(戦前編)2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>海外ニュースレター</td>
<td></td>
<td></td>
<td>P-225</td>
</tr>
</tbody>
</table>

ページ数の前のPはJFST誌と繊維学会誌を区別するために入っている記号ですので、本誌引用時はこの記号も含めた表記でお願いします。
Contents

Foreword
Thinking about Regional Textile Production in Japan
Masao MATSUDA P-189

Special Issue on Fiber and Polymer Researches at Kyushu University
Atsushi TAKAHARA, Manabu INUTSUKA, Yukari ODA, Daisuke KAWAGUCHI,
Takuya KITAOKA, Ken KOJIO, Tetsuo KONDO, Atsuomi SHUNDO, Akihiko TAKADA,
Yoshiaki TAKAHASHI, Atsushi TAKAHARA, Daisuke TATSUMI, Keiji TANAKA,
Ikuo TANIGUCHI, Yuji HIGAKI, Tomoyasu HIRAI, Tsuyohiko FUJIGAYA,
Hisao MATSUNO, Shingo YOKOTA P-190

Series of Historical Reviews of Japanese Textile Industry Supported by the Technology
−History of the Production, Sales, and Product Development−44
Rise and Fall of Textile-Producing Regions (14)
Yoshihiro MATSUSHITA P-218

Foreign News Letter
P-225

For citation of this journal, please include mark “P-” before the page numbers.
3- Dimension Simulation for Loop Structure of Weft- Knitted Fabric Considering Mechanical Properties of Yarn
Nyi Nyi Htoo, Atsushi Soga, Lina Wakako, Koichi Ohta, and Toshiyasu Kinari 105

Graft and Fixation of Modified Cationic Dye onto Cotton Fiber via ATRP and UV Method
Qiang Ji, Xiao Wang, Ruoyuan Song, Yongzhu Cui, and Lihua Lv 114

Detailed Analysis of Aliphatic Polyurea Crystals
Go Matsuba, Takayuki Kobayashi, and Yuta Chonan 122
3-Dimension Simulation for Loop Structure of Weft-Knitted Fabric Considering Mechanical Properties of Yarn

Nyi Nyi Htoo*1,3, Atsushi Soga*1, Lina Wakako*2, Koichi Ohta*4, and Toshiyasu Kinari*2

*1 Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi Kanazawa, 920-1192 Japan
*2 Institute of Science and Engineering, Kanazawa University, Japan
*3 Department of Textile Engineering, Yangon Technological University, Gyogone, Insein P.O., Yangon, Myanmar
*4 Gifu City Women’s College, Hitoichiba Kitamachi Gifu, 501-0192 Japan

The three-dimension weft-knitted loop model was constructed using the simulated yarn which was made by mass-spring system. The simulated yarn was constructed with the cross-sections consisting of the mass-points connected by the springs within the mass-points. In the simulated yarn, two types of springs were used to describe tensile and bending behaviour of the model. The geometrical knitted loop structure was constructed by setting the cross-sections of the simulated yarn in the loop model considering with the loop parameters. The mechanical properties of the loop model under the tensile condition were expressed by using some formulae considering with the construction of the knitted structure.

Graft and Fixation of Modified Cationic Dye onto Cotton Fiber via ATRP and UV Method

Qiang Ji, Xiao Wang, Ruoyuan Song, Yongzhu Cui, and Lihua Lv

School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China

Cotton cellulose is the most widely used natural polymers in various areas. Graft polymerization was attempted to introduce dyestuff onto cotton cellulose fiber for a trial on clean dyeing. A conventional free radical polymerization via UV initiation and a living radical polymerization via atom transfer radical polymerization method were used. Modified cationic dye with acrylic acid was grafted for coloring and an organosilane monomer was co-grafted for dye fixation. The chemical structure and morphology of grafted polymer of modified dye and organosilane were characterized. The color fastness and physical properties of grafted cotton cellulose were discussed. It is found that uniform organosilane film with moderate thickness formed via ATRP method was more beneficial to dye fixation with better color fastness. The original shape and typical convolutions of cotton fiber were reserved via ATRP method.

Detailed Analysis of Aliphatic Polyurea Crystals

Go Matsuba, Takayuki Kobayashi, and Yuta Chonan

Graduate School of Organic Materials Engineering, Yamagata University 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510 Japan

A study of the structure and morphology of polyurea-9, polyurea-10, and polyurea-11 crystals was conducted. For the quantitative analysis, these uniaxially drawn samples were examined using wide-angle X-ray scattering (WAXS) measurements. The WAXS patterns of the polyurea films suggested a chain-packing configuration similar to that of polyamide crystals, which might indicate the trigonal lattice structure observed for polyamide-10, polyamide-11, polyamide-12. The diffractions of (001) and (002) were strongly dependent on the length of the aliphatic hydrocarbon of polyurea. In addition, we observed the occurrence of transitions from the α-form to the δ-form during heating, and that from the δ-form to the α-form during cooling with in-situ synchrotron radiation WAXS measurements. The transitions were similar to the so-called Brill transition in polyamide or nylon films.

Graft and Fixation of Modified Cationic Dye onto Cotton Fiber via ATRP and UV Method

Qiang Ji, Xiao Wang, Ruoyuan Song, Yongzhu Cui, and Lihua Lv

School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China

Cotton cellulose is the most widely used natural polymers in various areas. Graft polymerization was attempted to introduce dyestuff onto cotton cellulose fiber for a trial on clean dyeing. A conventional free radical polymerization via UV initiation and a living radical polymerization via atom transfer radical polymerization method were used. Modified cationic dye with acrylic acid was grafted for coloring and an organosilane monomer was co-grafted for dye fixation. The chemical structure and morphology of grafted polymer of modified dye and organosilane were characterized. The color fastness and physical properties of grafted cotton cellulose were discussed. It is found that uniform organosilane film with moderate thickness formed via ATRP method was more beneficial to dye fixation with better color fastness. The original shape and typical convolutions of cotton fiber were reserved via ATRP method.

Detailed Analysis of Aliphatic Polyurea Crystals

Go Matsuba, Takayuki Kobayashi, and Yuta Chonan

Graduate School of Organic Materials Engineering, Yamagata University 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510 Japan

A study of the structure and morphology of polyurea-9, polyurea-10, and polyurea-11 crystals was conducted. For the quantitative analysis, these uniaxially drawn samples were examined using wide-angle X-ray scattering (WAXS) measurements. The WAXS patterns of the polyurea films suggested a chain-packing configuration similar to that of polyamide crystals, which might indicate the trigonal lattice structure observed for polyamide-10, polyamide-11, polyamide-12. The diffractions of (001) and (002) were strongly dependent on the length of the aliphatic hydrocarbon of polyurea. In addition, we observed the occurrence of transitions from the α-form to the δ-form during heating, and that from the δ-form to the α-form during cooling with in-situ synchrotron radiation WAXS measurements. The transitions were similar to the so-called Brill transition in polyamide or nylon films.
The Society of Fiber Science and Technology, Japan

Vol. 73, No. 5 (May 2017)

<table>
<thead>
<tr>
<th>開催年月日</th>
<th>講演会・討論会等開催名(開催地)</th>
<th>掲載頁</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. 5/17〜30. 5/18</td>
<td>平成 29年度「化学物質の有害性評価」〜初心者のあるの基礎から学ぶ病理学的評価（川崎市・かながわサイエンスパーク内講義室）</td>
<td>A30</td>
</tr>
<tr>
<td>5. 5/26</td>
<td>第59回公開講演会（横浜技術）（大阪市・大阪産業創造館5階）</td>
<td>A30</td>
</tr>
<tr>
<td>6. 6/6〜9/6</td>
<td>平成 29年度繊維学会年次大会 研究発表会・ポスター発表（東京都・タワーホール船堀）</td>
<td>A10〜A25</td>
</tr>
<tr>
<td>6. 7/17</td>
<td>第46回「感性研究フォーラム」講演会 ウエルネスと感性（大阪市・大阪府立男女共同参画・青少年センター）</td>
<td>A29</td>
</tr>
<tr>
<td>7. 8/14</td>
<td>平成 29年度繊維基礎講座〜せんいの製造過程の基礎知識とアパレル業界の現状を2日で学ぶ（東京都・東京工業大学 キャンパス・イノベーションセンター東京（国際会議室）</td>
<td>A28</td>
</tr>
<tr>
<td>7. 8/21</td>
<td>ブラスチック成形加工学会 第18回成形加工実践講座シリーズ（金型・CAE編）〜つなげば、CAE技術と金型づくり（東京都・スクエア荏原 大会議室）</td>
<td>A30</td>
</tr>
<tr>
<td>7. 8/21</td>
<td>17-1エコマテリアル研究会「触媒が先導する新しいバイオプラスチックの世界」（東京都・東京大学農学部フードサイエンス棟中島薫一郎記念ホール）</td>
<td>A30</td>
</tr>
<tr>
<td>7. 8/24〜9/25</td>
<td>第52回夏季講座 未来社会を支える新素材・新技術（横浜市・かながわ労働プラザ）</td>
<td>A30</td>
</tr>
<tr>
<td>8. 8/24〜10/1</td>
<td>平成 29年度 第47回繊維学会夏季ゼミナー「繊維科学の岐路に向けて」（岐阜市・みのの森 キッふめメディアコスモス）</td>
<td>A26〜A27</td>
</tr>
<tr>
<td>8. 8/24〜9/1</td>
<td>第31回日本キチン・キタサン学会大会（宜野湾市・沖縄コンベンションセンターよ）</td>
<td>A31</td>
</tr>
<tr>
<td>8. 8/27〜9/1</td>
<td>The 15th International Conference on Advanced Materials (IUMRS-ICAM 2017) （京都府・京都大学 吉田キャンパス）</td>
<td>A31</td>
</tr>
<tr>
<td>8. 8/27〜9/1</td>
<td>繊維学会誌掲載募集要領・広告掲載申込書</td>
<td>平成22年6月号</td>
</tr>
<tr>
<td>8. 8/27〜9/1</td>
<td>繊維学会誌掲載募集要領・広告掲載申込書</td>
<td>平成24年3月号</td>
</tr>
<tr>
<td>8. 8/27〜9/1</td>
<td>Individual Membership Application Form</td>
<td>平成24年12月号</td>
</tr>
<tr>
<td>8. 8/27〜9/1</td>
<td>繊維学会誌掲載募集要領・広告掲載申込書</td>
<td>平成26年1月号</td>
</tr>
<tr>
<td></td>
<td>訂正・変更届用紙</td>
<td>平成26年3月号</td>
</tr>
</tbody>
</table>

[編集委員] 伊原（岐阜大学）
[副編集委員] 髙谷（東洋女子大学）

編集委員

| 伊原（岐阜大学） |
| 小野（KBS-セーラー） |
| 澤田（和歌山県立工業研究） |
| 田村（奈良県立） |
| 増田（東京） |

顧問

| 澤川（京都工芸繊維大学） |
| 池田（京大工業） |

- 平成22年6月号
- 平成24年3月号
- 平成24年12月号
- 平成26年1月号
- 平成26年3月号
<table>
<thead>
<tr>
<th>行 事 名</th>
<th>開 催 日</th>
<th>開 催 場 所</th>
</tr>
</thead>
<tbody>
<tr>
<td>総会・年次大会</td>
<td>平成29年 6月7日(火) 〜9日(金)</td>
<td>タワーホール船堀（東京都江戸川区船堀）</td>
</tr>
<tr>
<td>纖維の基礎講座</td>
<td>平成29年 7月13日(木)、14日(金)</td>
<td>キャンパス・イノベーションセンター（東京）</td>
</tr>
<tr>
<td>第47回夏季セミナー</td>
<td>平成29年 8月8日(月)〜10日(水)</td>
<td>みんなの森さふメディアコスモス（岐阜市）</td>
</tr>
<tr>
<td>秋季研究発表会</td>
<td>平成29年 11月1日(金)、2日(土)</td>
<td>フェニックス・シーガイアリゾート（宮崎県）</td>
</tr>
</tbody>
</table>

平成29年度通常総会開催について

平成29年度通常総会を下記要領で開催いたしますので、ご出席いただきたくご案内申し上げます。なお、本総会の目的であります下記議案の決議には、定款により過半数以上の定足数を必要としますので、当日ご欠席の場合は、別途お送りします平成29年度通常総会開催通知の「返信用はがき」の委任状記入欄に（個人会員名または学会誌受領担当者名等）をご記入いただき、5月26日(金)までに必ずご返送くださいますようお願い申し上げます。

1. 日時：平成29年6月8日(木) 9:30〜（予定）
2. 場所：タワーホール船堀（東京都江戸川区総合区民ホール）5階 小ホール
 〒134-0001 東京都江戸川区船堀4-1-1 TEL: 03-5676-2211
3. 議案：第1号議案 平成28年度事業報告承認の件
 第2号議案 平成28年度決算報告承認の件
 第3号議案 平成28年度名誉会員推挙の件
 第4号議案 理事選任の件
4. 報告事項
 平成28年度公益目的支出計画実施報告に関する件

複写される方へ

本誌に掲載された著作物を複写したい方は、公益法人日本複製権センターと包括複写許諾契約を締結している企業の方でない限り、著作権者から複写権等の行使の委託を受けている次の団体から許諾を受けてください。

〒107-0052 東京都港区赤坂9-6-41 乃木坂ビル
（一社）学術著作権協会
TEL:03-3475-5618 FAX:03-3475-5619
E-mail: info@jaacc.jp

著作物の転載・翻訳のような、複写以外の許諾は、直接本会へご連絡ください。

Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923 USA
Phone: 1-978-750-8400 FAX: 1-978-646-8600

A2
平成 28 年度 織維学会功績賞受賞者

高原 淳「織維・高分子材料の表面構造・物性に関する研究と織維学会への貢献」

選 考 経 過

会長 鞍谷雄士

織維学会功績賞は、年にわたり本学会の発展ならびに織維の科学と工業の進歩に顕著な貢献をされた方を褒賞するものです。平成 28 年度の功績賞は、本年 2 月に開催された選考委員会において慎重に審議され、高原淳氏を満場一致で受賞候補者と致しました。次いで、3 月開催の理事会における審議の結果、同氏に功績賞を授与することを決定致しました。以下に受賞者の略歴、業績を簡単に紹介します。

高原氏は、織維・高分子材料、複合材料の表面・界面の構造と物理的性質の評価法を確立し、構造・物性の相関を明らかにするとともに、その知見に基づく表面・界面の構造制御、材料性制御に関する研究で高い業績をあげられ、1993 年には桜田武記念賞、1999 年には織維学会賞を受賞されています。織維・高分子の物性研究に精通し、特に表面・界面に関わる研究では多くの画期的な概念や材料開発の手法を提唱され、国内・国外で多くの受賞歴があり、当該分野での世界的な第一人者と認められる研究者として、織維・高分子科学分野の向上に多大な貢献をされています。

織維学会では、2004-2007 年に理事を務められたほか、西部支部では、支部長をはじめ、秋冬大会、夏冬セミナー、九州・西部・釜山・慶南高分子織維合同シンポジウム等の開催に大きな貢献を与え、織維学会の運営その発展に尽力して来られました。

以上のように、高原氏は長年にわたり織維分野の研究・教育/啓蒙・技術開発に貢献され、当該分野発展への寄与、織維学会発展への貢献度は高く、織維学会功績賞に相当すると評価されました。
溶融延伸による高性能繊維・膜の創製

群馬大学 大学院理工学府 上原 宏樹

3. 溶融延伸法によるナノ規則構造制御

これらの研究の過程で、分子鎖絡み合いを均一分布化することにより、市販のポリマー原料からでも、ブロック共重合体レベルの規則的結晶配列構造が得られることが明らかとなった。これを元にナノポララス膜が調製され、各種電池用や選択透過膜への展開が期待されている。このナノ構造制御法は、有機溶剤等の薬品を一切用いない点で、「地球に優しい」加工法であると言える。

〈主な業績リスト〉
繊維/布帛型太陽電池の開発

住江繊物㈱技術・生産本部テクニカルセンター
杉野和義
源中修一

杉野和義 源中修一

繊維/布帛型太陽電池の開発

〈研究背景〉

本技術はフレキシブルかつ通気性を有する繊維/布帛型太陽電池の製造技術に関するものである。

化石燃料による温暖化や原子力発電の安全性が問題視されており、次世代のエネルギーとして太陽光発電に大きな期待が寄せられている。繊維分野においても、電子機器と衣類品の融合技術としてウェアラブルデバイスの開発が進められており、その電源の有効活用として太陽電池の研究が進められている。

従来のフィルム状太陽電池では、導電率が十分でなくウェアラブルデバイス内での設置場所が限定される。発熱者である研究を進めている布帛型太陽電池は、一般的な繊維をベースにしていることから、布帛としての柔軟性および通気性を維持しながら発電デバイスとして用いることができる。さらに、発電素子となる繊維型太陽電池には有機薄膜太陽電池を採用しているため、シリコン太陽電池が苦手としている室内照明下でも十分な発電性能を発揮することが出来る繊維/布帛型太陽電池を開発した。

〈研究内容〉

有機薄膜太陽電池は材料となる半導体に有機系物質を用いており、材料コストの削減や分子設計による波長依存性の制御が期待できるものである。有機薄膜太陽電池の構成は、電極となる導電体の上に p 型および n 型有機半導体をサブミクロンオーダーの膜厚で膜厚することにより活性層を形成させ、その上に対極となる電極層を積層するものである。薄膜層構成体のため使用材料によって柔軟性を付与することも可能である。

1. 有機薄膜太陽電池の繊維化開発

繊維型太陽電池は、直径 0.2 mm 以下の柔軟性を有した金属線材に対し、活性層を含む太陽電池材料を積層塗布することにより作製される。この際、太陽電池材料の各層に欠陥があった場合や、活性層厚みが厚くなってしまった場合には発電性能が著しく低下してしまうため、繊維型基材に対する有機物の精密コーティング技術を開発した。この手法では、通常のダイスコーティングとは違い、材料溶液内基材への接合性および表面張力を利用してサブミクロンオーダーの膜厚精密制御を可能としている。

また、繊維型太陽電池からの安定的に電気を取り出すための補助電極引け技術を開発している。太陽電池材料の各層はサブミクロンオーダーの膜厚であり、さらに有機物を用いているため半田処理は適切でない。有機材料の薄膜を傷つけない強力で微細補助電極線を繊維型太陽電池周間に巻き付けることにより、柔軟性を維持しつつ電極取り出しが可能となった。現在、3%を超える変換効率を確認している。

加えて、一般的な有機薄膜太陽電池とは違い、製造工程に真空プロセスを含まない大気下における全塗布プロセスでの作製が可能な設計となっている。

2. 布帛型太陽電池の開発と展開

上述の繊維型太陽電池を布帛製織中に繊糸として挿入することで、布帛型太陽電池を作製している。現段階で室内光源のもので 150 μW の出力を確認しており、低消費電力タイプのセンサを動作させる十分な性能を有している。

この布帛型太陽電池は、重量小物である波形と柔軟性および通気性を有しているため、従来研究できたフィルム状の有機薄膜太陽電池よりも一歩先んじるレイアウトフリー電源であるといえる。

〈選考結果〉

本技術は柔軟性と通気性を有する繊維/布帛型太陽電池の製造技術に関するものである。繊維型太陽電池製造における繊維型基材上へのサブミクロンオーダーでの有機薄膜形成は、繊維に利用されてきた従来のコーティング手法では実現できなかった技術であり、有機薄膜形成が求められる分野への繊維型材料の展開につながる。また、繊維/布帛型太陽電池は柔軟性と通気性を有しているためウェアラブルデバイスとの相性が高く、繊維産業の裾野を大きく広げられる技術である。

以上の観点から、本技術は繊維学会技術賞に十分値すると認められた。

〈主な業績リスト〉

1) 池田佳加、杉野和義、布川正史、木村篤：特開2015-225982
2) Yoshika Ikeda, Kazuyoshi Sugino, Shuichi Yonezawa, Shuichi Gennaka, Mutsumi Kimura, Tadashi Fukawa, Hitodoshi Matsumoto, Akihiko Tanioka, 8th ACHEN-DRESDEN INTERNATIONAL TEXTILE CONFERENCE予稿集(2014). "Development of fiber-shaped organic photovoltaic cells by all-solution processing under ambient conditions for smart textiles"}

3) 坪井一真、松本英俊、布川正史、谷岡明彦、杉野和義、池田佳加、木村篤：SENTI GAKKAIH(報文) Vol. 71, No. 3(2015)、「樹脂コーティング封止層を有する繊維状および布帛状有機薄膜太陽電池における光吸収特性の検討」
溶融紡糸ポリエチレン繊維「ツヌーガ®」の開発

東洋紡繊株式会社 小 田 勝 二
増 田 実
中 野 龍 明

〈研究業績〉

本技術は、溶融紡糸で優れた力学物性を発現させたポリエチレン繊維の開発に関するものである。結晶化を抑制しつつ高度に分子配向させる繊維・延伸方法の作用により、世界で初めて溶融紡糸法でスーパーシリコン並みの力学特性を有するポリエチレン繊維「ツヌーガ®」の工業生産に成功した。

〈技術内容〉

1. 製造技術の開発

溶融紡糸法で高い力学物性を発現させる為に、結晶化を抑制しつつ高度に分子配向させる製造技術の確立を導入コンセプトとして、そのプロセスの要素技術について、研究開発を進めた結果、結晶化を抑制しつつ、分子配向を極めて厳密に制御しながら繊維することで、飛躍的に高い伸度で繊維を引き伸ばせることを見出し、それらを踏まえて考案した製造プロセスにて、スーパー繊維並みの力学特性を発現できる製品技術の確立に至った。

2. 生産プロセス開発および用途展開

工業化の生産プロセスは、前述の製造技術をベースにして開発に取り組んだ。均質な繊維構造を安定して制御、生産化を実現の要となる繊維技術の実質化、設備設計の検討と改良を重ねて生産プロセスを確立し、2007年より「ツヌーガ®」の工業生産を開始した。

上市した「ツヌーガ®」は、強度14〜15 cN/dtex、弾性率400 cN/dtex以上で成形可能な繊維で、最大の特長は優れた耐切創性能である。その特長を最大限に活用できる防護手袋を主力用途として、事業を展開している。また、原料固有の比熱の大きさに加えて、欠陥の少ない繊維構造が取り組むと推察している熱伝導性の良さを活かして、寝装用途、スポーツ衣料用途での採用が進んでおり、その需要は年々高まっている。
Prevention of Aggregation of Pectin-Containing Cellulose Nanofibers Prepared from Mandarin Peel

Akihito Nakajima (Nagoya Institute of Technology)

Effect of Cross-Sectional Configuration on Fiber Formation Behavior in the Vicinity of Spinning Nozzle in Bicomponent Melt Spinning Process

Yiwen Chen (Tongji University)
レオロジーの視点に基づく繊維・高分子材料
およびその成形加工プロセスの検討

福井大学学術研究院 工学系部門繊維先端工学分野 植 松 英 之

植物バイオマスを利用した新規な機能性バイオポリマーの創製

東京農工大学大学院 工学研究院 応用化学部門 兼 橋 眞 二

植松英之氏は、物質の流動と変形に関する学問分野である「レオロジー」の観点から、繊維・高分子の成形加工プロセスを最適化する研究に取り組んでいる。従来、流動しながらミクロな構造変化に伴い微細構造が形成されるプロセスを理解するための手法は、生産性を高めるための研究に必要なところである。そこで、レオロジーの視点から構造変化を理解すると同時に、成形加工性とレオロジーの関係を明らかにすることをキーワードに、機能性材料を効率よく成形加工するプロセス設計、材料設計を提案する研究スタイルで取り組んでいる。現在の研究の中では、(1)ポリテトラフルオロエチレン(PTFE)の繊維化、(2)多成分系材料における分散構造とレオロジー、レオロジーと成形加工性、成形加工性と力学特性の関係を構築的に遂行している。これらでは、溶剤に可溶な樹脂、PTFE、導電性フィラーベネルを用いたPTFEの繊維化、子粒金属を用いたPTFEの低分子分散系の研究を展開している。

一方、植物バイオマスの利用は、環境負荷の低減を目的とした新しい機能性バイオポリマーの創製に取り組んできた。特に食料需要と競合しない非食用な植物バイオマスで、カシューナッツの殻を用いたPTFEの繊維化、天然ゴムのケータシールによるPTFEの繊維化、などが提案されている。これらを利用した新規機能材料の創出に関する研究を展開している。

兼橋真二氏は、持続可能な持続可能な社会実現に向けて、再生可能な生物バイオマスの有効利用を目的とした新規な機能性バイオポリマーの創製に取り組んだ。特に食料需要と競合しない非食用な植物バイオマスであるカシウナッツの殻を用いたPTFEの繊維化、天然ゴムのケータシールによるPTFEの繊維化などが提案されている。これらの研究を通じて、バイオポリマーの持続可能性を高め、環境負荷を低減することが可能であると考えている。
繊維状ウイルスからなるソフトマテリアルの創製

東京工業大学物質理工学部 応用化学科 澤田　敏樹

澤田敏樹氏は、繊維状ウイルスの一種であるM13ファージを機能性高分子として取り扱い、機能性ソフトマテリアルを構築する研究を展開している。M13ファージは直径が約5nm、長さ約1μm、分子量約1630万と極めて細長い巨大な構造をもつ。遺伝子工学に基づくタンパク質の改変技術が確立されており、表層タンパク質に融合するかたちで望みのペプチドを提案できる。また、高濃度条件下では規則的に集合化し、濃度に依存してその液晶構造を変化させるリトロピック液晶を形成する。これらのM13ファージを新たにマテリアル素材として利用することで、繊維状ウイルスに新たな価値を見出することに成功してきた。

抗原ペプチドを提示したM13ファージを遺伝子工学により構築し、抗体を固定化した金ナノ粒子を混合すると、抗原-抗体反応を基に両者が自己組織化し、ハイドロゲル形成することを示している。得られたゲル中では、M13ファージは液晶配向し、また金ナノ粒子はフラクタル様にネットワーク構造を形成しており、高密度構造制御された新たなハイドロゲル系を構築した。さらに、この分子設計の一般性を明らかにすると共に、分子間分散性をもつ機能性ハイドロゲルをM13ファージから構築することも達成している。一方で、マテリアルに結合するペプチドを提示したM13ファージを利用することにより、高分子基材上でM13ファージを効率的に配向固定できることや、レアアースの一種であるネオジムの選択的な吸着剤としてM13ファージを利用することも明らかにしてきた。

従来の遺伝子工学技術として利用されてきた繊維状ウイルスを高分子科学と融合させてマテリアル応用する一連の研究成果は、高分子化合物に繊維科学の新たな展開に寄与するものであり、繊維学会奨励賞としてふさわしいものと認められた。

〈主な業績〉

X線回折・散乱法を用いたバイオマスプラスチックの結晶多形と共結晶化の解明

東京工業大学物質理工学部 応用化学科 丸林 弘典

丸林氏は、再生可能な天然資源を原料とする高分子、バイオマスプラスチックの高性能化・高機能化の指針を得るために、X線回折・散乱法を駆使して詳細なる静的・動的解析を行うことで、その結晶化や固体構造を研究してきた。特に、バイオマスプラスチックの結晶多形と共結晶化現象に注目し、大変興味深い知見を得ている。

まず、代表的バイオマスプラスチックであるポリ(L-乳酸)(PLLA)の低分子化合物との共結晶化(疑似多形)を出しこれは、その結晶構造を明らかにした。さらに、PLLAとの光学異性体、ポリ(α-乳酸)の共結晶(ステレオコンプレックス)の単結晶の成長様式や、L-乳酸を主としたPLLAランダム共重合体におけるLLAセグメントとコモノマーセグメントの共結晶化に関して詳細な解析により多くの基礎的知見を得ている。

次に、新規高性能バイオマスプラスチックとして、微生物が分泌する多糖類のカクランの誘導体、カクランプロピオネットに着目し、発の大きく異なる2つの結晶構造(I型・II型結晶の結晶多形)を見出し、熱・溶媒アニーリングにより両者を作り分けるとともに、X線繊維回折法によりその結晶構造を解明した。最近の研究では、新規高性能バイオマスプラスチックとして選別イソプロピル基の置換型PLLAに着目し、高融点、高結晶化度、結晶化が著しく速いこと、そして利用キャストの熟処理では異なる結晶形が発現すること(結晶多形)を報告している。現在、放射光X線を用いた結晶化や結晶転移のその場観察にも精力的に取り組んでおり、今後の活躍が一層期待される。

本研究で得られたバイオマスプラスチックの結晶多形や共結晶化に関する基礎的知見は、環境に優しい高分子・繊維材料の開発において、微細構造設計による高性能化・高機能化、及び新規バイオマスプラスチックの物性・機能開拓の観点から極めて有用であると考えられる。以上より、本研究は繊維学会奨励賞に値するものと認められた。

〈主な業績〉

平成 29 年度繊維学会年次大会
研究発表会・ポスター 発表

日時：平成 29 年 6 月 7 日(木) 13:30～14:30
会場：タワーホール船場(江戸川区総合区民ホール)
〒134-0091 東京都江戸川区船場4-1-1
TEL:03-5676-2211 FAX:03-5676-2501
http://www.towerhall.jp/
(交通)都営地下鉄新宿線船場駅下車北口徒歩 30 秒

お知らせ
特別セッションの 2 分野を中心に繊維学会論文誌“Journal of Fiber Science & Technology(JFST)”の特集号をご企画いたします。詳細は 4 月号 A18 参照。

開催概要
繊維学会年次大会は、繊維・高分子科学に携わる研究者や技術者が一堂に会し、研究成果の発表を行い、参加者と充実した議論やコミュニケーションができる場を提供することを目的に開催の基本方針としています。また、活躍する若手研究者の顕在化のために「若手発表会」を、優秀な学生・若手研究者を顕彰するために「若手ポスター賞」をそれぞれ企画しています。例年、多数の一般発表に加え、特別講演や依頼講演もあります。会員の皆様には、ご自身の最新の研究成果の発表の場、議論・討論の場、ネットワークを広げる場として、本年次大会を積極的にご活用ください。

期間中の主な行事（昨年度と異なるのでご注意ください）
特別講演 6 月 7 日(木) 13:30～14:30 A 会場(5 階小ホール)
日本初、新元素“ニホニウム”の発見と未来への展望
理化学研究所 仁科加速器研究センター
超重元素研究グループ 森本幸司
各賞授賞式 6 月 7 日(木) 14:30～15:10 A 会場(5 階小ホール)
懇親会 6 月 7 日(木) 18:30～20:30 2 階 桃源
総会 6 月 8 日(金) 9:30～10:10 A 会場(5 階小ホール)
各賞受賞講演 6 月 8 日(金) 10:40～12:20 A 会場(5 階小ホール)
ワインパーティー 6 月 8 日(金) 18:30～20:00 2 階 蓬莱
企業展示 6 月 7 日(木)～9 日(金) P 会場(1 階展示ホール)

発表分野
プログラム編成にあたり、発表内容を加味して、分野変更や分野統合などを行う可能性があります。予めご了承ください。
[1] 繊維・高分子材料の創製] 1a 新素材合成、1b 素材変換・化学修飾、1c 無機素材・無機ナノファイバー・有機無機複合素材
[2] 繊維・高分子材料の機能] 2a オプティクス・フォトニクス、2b エレクトロニクス、2c イオニクス、2d 機能膜の基礎と応用、2e 接着・界面表面機能、2f 耐熱性・難燃性
[3] 繊維・高分子材料の物理] 3a 結晶・非晶・高次構造、3b 繊維・フィルムの構造と物性、3c 複合材料の構造と物性
[4] 成形・加工・紡糸] 4a ナノファイバー、4b 繊維・フィルム、4c 複合材料・ポリマー
[5] 染色・機能加工] 5a 染色、5b 機能加工
[6. テキスタイルサイエンス] 6a 紡織・テキスタイル工学、6b 消費科学、6c 感性計測・評価
[7. 天然繊維・生体高分子] 7a 紙・バルブ、7b 天然材料・ナノファイバー、7c 生分解性材料、7d バイオポリマー、7e バイオマス
[8. ソフトマテリアル] 8a 液晶、8b コロイド・ラテックス、8c ゲル・エラストマー、8d ブレンド・ミクロ相分離、8e その他ソフトマテリアル
[9. バイオ・メディカルマテリアル] 9a 生体材料・医用高分子材料
特別セッション
[S1. セルロースナノファイバー]
[S2. 繊維・高分子材料と放射光]

優秀発表者の表彰：
次の2部門で優秀者を表彰します。
- 部門A [口頭発表：一般A1または若手A2]（討論5分を含めて発表時間20分）
- 部門P [ポスター発表：一般P1または若手P2]
A2：平成29年4月1日現在、40歳未満の正会員および学生会員
（学生会員は博士後期課程の学生に限る）
P2：平成29年4月1日現在、博士号を持たない36歳未満の学生会員
A2およびP2の受賞者は、2日目のワインパーティーで公表し表彰します。
今年度は、A2の受賞者も、2日目のワインパーティーで公表し表彰します。

予稿集発行日：平成29年6月5日(月)
発表方法：
口頭発表：液晶プロジェクターが準備されています。パソコンは発表者自身がご持参ください。液晶プロジェクターとPCは、ミニD-Sub 15ビン(オス)ケーブルで接続します。ミニD-Sub 15ビン端子のないPCを参される場合は、アダプターもご自身でご準備ください。
ポスター：縦180cm×横120cm×高さ190cmのポスターボードに掲示ください。掲示場所が不足する場合は、別途ご案内します。

ポスター展示時間：
1. ポスター貼付
 - プログラム決定次第、順次掲載します。
2. 発表時間
 - Obligation time（聴講に来た人に研究発表内容を説明したり、質問に答えたりする時間）にはポスター前に待機してください。その時間以外は、発表者はパネル前に待機する必要はありませんが、ポスターは掲示しておいてください。
3. ポスター撤去
 - Obligation time 終了後、17:00 までにポスターを撤去してください。

参加申込：
注）登録の際、纖維学会員は会員番号（個人会員、学生会員の方）が必要になります。
会員番号は学会誌送付用封筒に記載されております。
非会員の方は、会員番号の入力欄に「000000000000(ゼロを12桁)」入力してください。

送金方法：登録者は、事前登録締切期限までに参加登録料を下記のいずれかの方法にてご送金ください。
振込手数料は各自でご負担ください。
※期限内に入金が確認できない場合は、当日登録料金となります。
(1) 現金手留：〒141-0021 東京都品川区上大崎 3-3-9-208

一般社団法人繊維学会 年次大会係
(2) 銀行振込：三菱東京 UFJ 銀行 目黒支店 普通口座 4287837
（加入者名）一般社団法人繊維学会
(3) 郵便振替：口座番号 00110-4-408504
（加入者名）一般社団法人繊維学会年次大会

参加登録料・懇親会費

<table>
<thead>
<tr>
<th>参加登録料</th>
<th>繊維学会正会員</th>
<th>繊維学会学生会員</th>
<th>非会員</th>
<th>学生非会員</th>
</tr>
</thead>
<tbody>
<tr>
<td>当日登録料</td>
<td>12,000 円</td>
<td>20,000 円</td>
<td>5,000 円</td>
<td>8,000 円</td>
</tr>
</tbody>
</table>

懇親会費

<table>
<thead>
<tr>
<th>懇親会費</th>
<th>繊維学会正会員</th>
<th>繊維学会学生会員</th>
<th>非会員</th>
<th>学生非会員</th>
</tr>
</thead>
<tbody>
<tr>
<td>当日登録料</td>
<td>8,000 円</td>
<td>8,000 円</td>
<td>4,000 円</td>
<td>4,000 円</td>
</tr>
</tbody>
</table>

その他
不測の事態（インフルエンザ流行等）が生じた場合は、Web 上で告知することをご承知おきください。

ご不明の点は、学会事務局（TEL: 03-3441-5627 FAX: 03-3441-3260 E-mail: office@fiber.or.jp）にお問い合わせください。

平成29年度繊維学会年次大会実行委員会

実行委員長：岩田忠弘（東大）
実行副委員長：荒西義高（東京）、金井博幸（信州）、斎藤隆之（東大）、富永洋一（農工大）
担当理事：戸村川利（東工大）
実行委員（五十音順）：戸田敏子（お茶の水大）、荒木 澤（信州大）、石井大輔（東京農業大）、石毛亮平（東工大）、伊藤瑞香（和洋女子大）、上谷幸治郎（立教大）、植松亮之（福井大）、江島広貴（東大）、加部泰三（JASRI）、小林元康（工学院大）、佐藤高政（信州大）、敷中一洋（亀戸大）、高木秀彰（高エネ加速研）、宝田 亘（東工大）、橘 熊野（群大）、菅野陽子（農工大）、田中稔久（信州大）、田中 学（首都大）、中村幸治（福井大）、中澤悟客（農工大）、長崎直子（和洋女子大）、藤澤秀次（森林総研）、塩原洋輔（信州大）、松田靖弘（静岡大）、丸林弘典（東工大）、村瀬浩司（共立女子大）

学会事務局：野々村弘人、山本惠美
平成 29 年度繊維学会年次大会
プログラム

特別講演
6 月 7 日㈪ 13:30～14:30 A 会場（5階小ホール）
［座長：岩田恵子（東大）］
13:30 ［S01 日本初、新元素“ニホニウム”の発見と未来への展望…］（理研）森本幸司

功績賞・学会賞・技術賞・論文賞・奨励賞
授賞式
6 月 7 日㈪ 14:30～15:10 A 会場（5階小ホール）

通常総会
6 月 8 日㈫ 9:30～10:10 A 会場（5階小ホール）

学会賞受賞講演
6 月 8 日㈫ 10:40～11:15 A 会場（5階小ホール）
［座長：木村邦生（岡山大）］
10:40 2S01 溶融延伸による高性能繊維・膜の創製…（群馬大）上原宏樹

技術賞受賞講演
6 月 8 日㈫ 11:15～12:05 A 会場（5階小ホール）
［座長：吉田雅俊（東京）］
11:15 2S02 繊維/布帛型太陽電池の開発…（岡山繊物）杉野和義、深川修一
11:40 2S03 溶融紡糸ポリエチレン繊維「ツヌーガ」の開発…（東洋紡）小田勝之二、増田実、中野龍明

（以下、プログラムは会場順に表示しています。講演・発表時間はいずれも質疑応答を含みます。）

A 会場（5階小ホール）

6 月 8 日㈬
繊維・高分子材料と光放

［座長：村瀬浩文（共立女子大）］
10:00 1A01 Polypropylene の繊維構造形成における結紮速度の影響…（仙台大・繊製）〇金村孝、小池哲高、平澤達也、伊香浦敏文、大越豊
10:20 1A02 小角 X 線散乱による鋼アンモニアレーヨン凝固過程の解析…（旭化成）〇山崎八名、見野宜弘
10:40 1A03 ホーネオシルクの素材化における特異な構造形成（農研機構）〇吉田康愚、亀田恒徳、（豊田工業）田代孝二（Marburg University）Andreas K. SCHAPER
11:00 1A04 微生物生成ポリエチレンに対する溶融プレ
レス处理延伸法の開発と高次構造変化…（JASRI）〇加部泰三、（理科大）市武、大竹勝人、（理研）辻岡康孝、（東北大・多元研）高田昌樹、（東大・農）岩田豊
11:20 1A05 高輝度光放電を用いたフィルム・繊維の構造解析…（東洋紡）〇船崎健一、今井義、北河啓

11:40 1A06 小角 X 線散乱によるエポキシ樹脂の硬化挙動解析…（デンソーホール本志、青木孝司、杉浦昭夫、（九大・先端研）高崎淳、（東大・物性研）柴山光弘

[座長 加部泰三（JASRI）]
15:30 招待講演
1A08 放射光イメージングを用いた加熱と共に変化する毛髪内構造評価…（ミルボン）伊藤康

[座長 山本藤彦（名工大）]
16:10 1A10 パラミロンエステル誘導体の調製と構造と物性評価および結晶形成率の測定…（東京大・農、理研開）〇井村敏之、石井静大、（東大・農、理研開）、JASRI 加部泰三、（理研開）引間孝明、高田昌樹、（東大・農、理研開）岩田豊
16:30 1A11 小角・広角 X 線散乱実験によるセルロース/イオン液体溶液の構造解析…（東大・物性研）〇織部和、（山口大学・創成）藤原健太、（横国大学）竣工、（東大・物性研）草野巧己、柴山光弘

[座長：船越健一（東洋紡）]
16:50 1A12 異なる竹材における細胞壁内のセルロースマイクロフリブリル傾角およびセルロース構造の解析…（京工繊大・バイオ）〇岡久陽子、（神戸大院工）本郷千鶴
17:10 1A13 放射光時分割 WAXD/SAXS 同時測定による結晶性パーカマブロックの多形現象の解明…（東工大・物質）〇丸山弘典、牛尾孝顕、青木大、篠塚信和、野島修一
17:30 1A14 時分割 SAXS 法を用いた変形下におけるゴム中フィラーデの分散状態の変化に関する研究…（山形大学・有機）〇西辻哲太郎、馬林貴、（山形大・工）北村孝志、大友真、（京大・化研）竹中幹人

6 月 8 日㈭
繊維・高分子材料と光放

［座長：西辻哲太郎（山形大）］
14:00 2A01 斜入射 X 線散乱法を用いた高分子薄膜の結晶構造の評価…（三井化学）〇内田公典、三田一樹、（九大・先端研）根垣雄次、小尾尾原、高居淳
14:20 2A02 ポリオールとジジソシアネートで伸長したポリウレタンの分子構造解釈と力学特性…（九大工業）増田武徵、野野現修、（九大工業）工藤、（九大・先端研）WPLFCNER）〇小尾尾原、高居淳
14:40 2A03 微小角入射 X 線散乱測定時間測定の測定によるスピンコート成膜過程におけるポリエチレノールの架橋構造の変化の追跡…（京工繊大・工芸）〇Park Jinyou、宮野雅、合田正美、（京工繊大・研推）Hossain Md. Amran、（京工繊大・繊製）桜井伸一、（JASRI、SPShing）増永啓明、（理研 SPShing-8 センター）引間孝明、（理研 SPShing-8 センター）東北大・多元研高田昌樹、（京工繊大・繊製、理研 SPShing-8 センター）佐佐木

[座長：小尾尾原（九大）]
15:20 2A05 ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)の溶融-等温結晶化簿
膜におけるラメラの選択的配向性……(京工繊大・工芸)○合田真美、(京工繊大・工芸)堤正貴、(京工繊大・工芸、京工繊大・繊維)樋井伸一、山根秀樹、(JASRI、SPring-8)増永啓康、(理研SPring-8センター)引間孝明、(東北大・多元研)高田昌樹、(九大・先導研)平井信悟、髙原淳、(京工繊大・工芸、京工繊大・繊維、理研SPring-8センター)佐々木開

15:40 2A06 マキシマムエントロピー法と粉末X線解析法に基づくプロトン・ヒドロキシルチロート結晶の電子密度分布解析法の検討……(京工繊大・工芸)○山本淳記、合田美真、(京工繊大・繊維)Hossain、Md Amran、(京工繊大・工芸、京工繊大・繊維)樋井伸一、(理研SPring-8センター)加藤健一、(東北大・多元研)高田昌樹、(京工繊大・工芸、京工繊大・繊維、理研SPring-8センター)佐々木開

[座長 鳥飼直也（三重大）]

16:00 2A07 Grain Growth Mechanism for Spherical Microdomains Near the Surface of a Thin Film of a Block Copolymer……(Kyoto Inst. Tech.)○ Rasha Ahmed Hanafy Bayomi, Konomi Honda, Sonos Sasaki, Shinichi Sakurai

16:20 2A08 ブロック共重合体/ホモポリマーを背景にしたプロトバンクの分裂型制御による集積化する原子線分散構造を用いた総合性効率化……(京工繊大・工芸)○中山功雄、(高木第一高)髙木秀影、清水伸雄、五十嵐教、(京工繊大・工芸)佐々木開、樋井伸一

[座長 高木秀影（高木第一高）]

17:00 2A10 液晶性ジブロック共重合体/ホモポリマーを用いた薄膜中での垂直配向シリンダーホイール制御……(京工繊大・工芸)○川村正義、(村田製作所)丸山則彦、(京工繊大・工芸)浅田正宣、佐々木開、樋井伸一

17:20 2A11 分子配列の異なる二成分三元ブロック共重合体の相分離構造に及ぼす添加ホモポリマーの影響……(三重県大学・地域イノベーション)茂井佳樹、○島田直也、(三重県大学工)藤井義光

17:40 2A12 特異な温度依存小角散乱プロファイルを与えるブロック共重合体のミクロ相分離構造を……(名古屋大・工)○佐竹好輝、吉本健一、山本勝宏

[座長 阿部貢太郎（京大）]

11:00 1B04 セルロースナノファイバーからなる新規キセロゲルの調製と特性解析……(東大・農)○山崎俊輔、安井幸章、齋藤善之、礫見正

11:20 1B05 TEMPO酸化セルロースナノファイバーハイドロゲルの物性……(信州大・カーボン研)○大島忠幸、三浦隆、野口徹

[座長 齋藤善之（東大）]

15:30 1B08 天然セルロースの長さ方向における高次構造……(農工大・農)堀川祥平

[座長 石井大輔（東大）]

16:10 1B10 モノリボナイト充てんセルロースナノファイバーの補強性と応力伝達……(神戸大・工)○西野孝、大橋卓弥、本郷善人

16:30 1B11 濃厚ポリマー/プラウンカウンплатN/CNF/ポルトブラシ複合ゲルの創製とトライボロジー特性……(京大・化研、松本油脂製薬)○清水吉彦、(京大・化研)横原泰史、辻村敬行

16:50 1B12 面内異方性を持つ伝熱セルロースナノペーパー……(名古屋大学・理)○上谷幸治郎、岡田拓巳、大山秀子

[座長 藤澤秀次（森永総研）]

17:10 1B13 低分子アミンによるTEMPO酸化セルロースの熱安定性の検討……(東大・農)○落合優、齋藤善之、礫見正、Nathalie Lavoine

17:30 1B14 三階酸セルロースナノファイバーの作製……(信州大・工)○井澤美佳、(信州大・繊維)村上泰、森川英美、後藤康夫、山中茂

17:50 1B15 異種対イン混合系におけるナノセルロースの電気二重層構造……(東大・農)○久保竜士、齋藤善之、礫見正

6月8日（木）

天然繊維・生体高分子

[座長 高木見孝（九大）]

14:00 2B01 ジルニュード結合の還元分解性能を利用した限時環境分解性的生分解性高分子……(群馬大・工)○〇野崎貫、川添聡、斎藤正也

14:20 2B02 P(HB-co-3HH)/Polivinyl alcohol Blend Nanofibers: Characterization and In vitro degradation and bio-compatibility……(Shinshu University)○Rina Afani Rebia, Toshihisa Tanaka

14:40 2B03 クモ糸の紡糸機構と動的な構造変化に関する研究：いかにクモ糸はクモ糸を誘導するか……(理研・酵素)○沼田村史、(JASRI)増永啓康

15:00 2B04 側鎖に芳香環を有する5-ヒドロキシメチルフルラール誘導体を基盤としたピニオールマレートの合成……(農工大・農)○毛利嘉一、(農工大・農)粕谷夏基

[座長 石井大輔（東大）]

15:20 2B05 エリス菌フィブロンの精密一塊構造をベースとした構造転移に関するC ラベルNMRモニタリング……(農工大・工)○西村明生、(農工大・工)佐藤和哉、(農工大・工)朝倉哲郎

15:40 2B06 水中カウンターコリレーション法を用いてクロゲンシナノファイバーから調製されるナノブロックの性質……(九大・生資研)○辻田裕太郎、
近藤哲男

16:00 2B07 セルロースナノファイバーの結晶性解析…（東大農・農）○大長一帆、小野祐子、斎藤徹之、緒形真

【座長 橘野由（群馬大）】

16:20 招待講演
2B08 バイオマス由来合気族化合物群を利用した新素材開発（理研）阿部英喜

【座長 沼田圭司（理研）】

17:00 2B10 イオン液体複合化によるセルロースフィルムの熱加工性付与…（九大・先端研）○高田晃彦、（鹿児島大学・理工）羽生泰浩、山元利哉、門川淳

17:20 2B11 ポリ乳酸の二軸延伸による薄膜化…（群馬大・理工）板谷奈実、○上原宏樹、坂村拓也、山延健

6月9日午後

天然繊維・生体高分子

【座長 上高原浩（京大）】

9:30 3B01 伸長過程における竹から精製したセルロースの物理評価およびセルロースナノファイバーへの応用…（京工繊大・工芸）○坂田洋基、岡田保、浦川宏

9:50 3B02 各種バイオマスから精製したセルロースの物理評価とセルロースナノファイバーへの応用…（京工繊大・工芸）○古谷裕真、岡田保、浦川宏

10:10 3B03 ソバ糸由来セルロースナノファイバーの特性解析…（東大・農）○中村泰隆、斎藤徹之、穂貝真、（京都大学・農）金野尚武、羽生直人

【座長 橘野由（群馬大）】

10:30 3B04 フィブリオンとセリシンの相互作用の可能性…（群馬大・理工）○河原豊

10:50 3B05 木質バイオマスを原料とした両親媒系マテリアルの合成…（京大・農）○上原浩、三木健太郎、岡西謙子、高野俊幸

【座長 河原豊（群馬大）】

11:10 3B06 R. eutropha を用いたポリ（3-ヒドロキシアルカノエート）二元プロック共重合体の合成および結晶化挙動…（龍谷大・理工）○前田智、中沖隆彦

11:30 3B07 P. putida による炭素源に5-フェニルベンタン酸を用いたポリ（3-ヒドロキシアルカノエート）の生合成…（龍谷大・理工）○田中雄規、中沖隆彦

11:50 3B08 ジカルボン酸とジオールからなる脂肪族ポリエステルの生分解性～化学構造相関解明…（群馬大・理工）○橘信昭、馬場琢郎、鶴田俊太、影山航平、柏谷健一

C会場 (4階 401 会議室)

6月7日午後

バイオ・メディカルマテリアル

【座長 中澤靖元（農工大）】

15:30 1C08 ホームシルクの素材化と利用…（農研機構）○亀田恒徳、吉岡太陽

15:50 1C09 生体材料応用への基盤となる含水状態の家蚕糸素材に関する NMR 研究…（農工大・工）○田制裕佑、遠藤雅則、福原史太、朝倉哲郎

16:10 1C10 多機能生理活性シルクフィブロイン物理架橋ゲルの in vivo 血管誘導…（国研）○山岡哲二、村越成宏、神戸裕介

【座長 亀田恒徳（農研機構）】

16:30 1C11 ペプチドを用いた細胞接着性シルクフィブロインフィルムの作製…（防衛大・応化）○中澤訓香子、橋本誠一、浅野真志、（農工大・工）市田雄也、中澤靖元

16:50 1C12 脱細胞化動脈組織模造の再細胞化への影響解析…（信州大・繊維）○根岸淳、（東北医大・生研）橋本良秀、山下寛立、張永騏、松本誠一、岸田晶夫

17:10 1C13 ボリプロピレンオキシドに結合するペプチドを分子ツールとして用いる医用高分子の機能化…（東工大・物質）○澤田敏樹、渡澤実美、福田宏輝、芹澤武

17:30 1C14 草剤放散制御のための芯部ナノファイバーの創成と機能評価…（福井大・工）○日比野佐也、末信一朗、藤田聡

6月8日午後

バイオ・メディカルマテリアル

【座長 中澤靖元（防衛大）】

14:00 2C01 電極表面における酵素分子活動制御による高性能バイオデバイスの構築…（福井大・工）○坂元博昭、大西拓、高村健一、里村武規、末信一朗

14:20 2C02 エーテル系ケトンに生分解性ポリカーボネートの含水性質の制御と血小板粘着性…（山形大・工学）○横川和樹、羽賀拡太、（山形大学・理工）井上裕人、高岡健矢、佐藤千子、（山形大・FROM）土屋達、（九大・先端研）田中賢

14:40 2C03 エステルフライ型ポリトリメチレンカーボネート誘導体のディッコート脂製調と表面解釈…（奈良先端大・物質創成）○網野宏治、孫石英義

【座長 中澤靖元（農工大）】

15:00 招待講演
2C04 再生医療の実用化～現状と課題～（株式会社ジャパン・ティッシュ・エンジニアリング）品川一郎

【座長 福島和樹（山形大）】

15:40 2C06 放射光小角 X 線散乱法を用いたニワトトリ卵自由来リソチームの溶液中における蛋白質間相互作用および空間分布の解明…（信州大・繊維）○仙石琢也、柳脇健一、橘野修一、（信州大・繊維）新井亮一、佐藤高彰

16:00 2C07 バイオ電池への応用を目指したバイオディバイス界面の構築…（福井大・工）○末信一朗、殿岡愛見、里村武規、坂元博昭

16:20 2C08 セグメント配置の異なるポリウレタンナノファイバー表面へのタンパク質吸着挙動の解析…（福井大・工）○森田祐子、坂元博昭、末信一朗
D会場（4階 407室）

6月7日（水）

テキスタイルサイエンス

【座長】村瀬浩治（共立女子大）
15:30 1D08 ナノ繊維系の試作とその引張特性について…（信州大学・理工）○岩谷哲浩・（信州大・繊維）坂口明男、木村裕和、森川英明、朱春紅、（信州大・IFES）金泉文、高寺政行、（パナソニック・AP社）橋本和彦
15:50 1D09 セルロースナノファイバーの製造法が塗工系の物性に及ぼす影響…（東京家政大・家政）○白井要美、瀬上裕子、酒井千聖、芳賀美波、横尾亜耶、濱田美実
16:10 1D10 X線CTを用いた金属布不織布の厚み方向構造分布の評価…（信州大・繊維）○石川達也、石井雄二郎、金慶孝、大波豊
【座長】濱田美実（東京家政大）
16:30 1D11 体幹部圧迫が姿勢と動作に及ぼす影響…（化学工学圏・生活環境）○伊豆南穂美、佐藤真理子
16:50 1D12 紙布の接触冷感に関する研究…（共立女子大・家政）○村瀬浩治、毛塚翔子、石原慶子、後藤純子
17:10 1D13 最大熱流束の測定に関する研究…（神戸大学・人間環境形成環境）○井上真理
【座長】塚場洋輔（信州大）
17:30 招待講演
1D14 バイオマーカーを用いた心身ストレスの可視化技術…（信州大・繊維）山口昌樹

6月8日（木）

テキスタイルサイエンス

【座長】井上真理（神戸大）
14:00 2D01 日本産木代績に対する外国人と日本人の印象評価の違い…（信州大学・経管）○設楽聡那子、（信州大・繊維）吉田良昭、（信州大学・経管）上村健一（岐阜・生活技術）藤原啓吾、山城穂子
14:20 2D02 人体熱モデルによる皮膚温度予測における着衣者の熱移動モデル…（旭化成）○髙橋順一、小原和幸、矢田和也
14:40 2D03 WBGTによる熱中症予防指針の有効性および限界に関する検討…（横国大学・教育）○藤本秀生、（元横国大学・教育）青柳卓也
【座長】高寺政行（信州大）
15:00 2D04 手組による曲がり繊維の製造技法開発…（繊維・繊維研究所）○吉田幸子、（村田機械）魚住史也、（京工繊大）多田多子
15:20 2D05 真田繊維の構造と強さ…（繊維・繊維研究所）○髙木拓也、（岐阜大・工）仲井朝美
15:40 2D06 繊維の評価手法に関する検討…（京工繊大）○大谷幸雄、（繊維・繊維研究所）菊池正明子、（テクスト）多田多子
【座長】牛込ヒロミ（実験女子大）
16:00 2D07 紙被の発泡過程である繊維系を用いた編物の洗たく乾燥に伴う風合い変化…（信州大学・理工）○平田風沙、（信州大・IFES）金見武、高寺政行、（近藤繊物所）神田祐一、川上正敏
16:20 2D08 搖り回数が異なる繊維によるケトルの洗濯に伴う風合いの変化…（信州大・繊維）○上條正義、山之内尚弥、上原真弓、吉田宏昭、（近藤繊物所）川上正敏、神田祐一、（ホットマン）坂本将之
16:40 2D09 編物の収縮率に及ぼす温度及び乾燥条件の影響…（信州大・繊維）○橋本有里香、（信州大・IFES）金泉文、高寺政行、（パナソニック・AP社）橋本和彦
【座長】上條正義（信州大）
17:00 2D10 市販アルパカ毛布の色性堅牢度に及ぼす時間、温度の影響…（実験女子大・生活科学）○筒狭サナエ、石井桜子、牛腸ヒロミ、（東工大・名譽）小見山二郎
17:20 2D11 手洗い洗濯における繊維変形挙動シミュレーション…（岐阜市立女子大）○太田幸一、（花王）小島喜宏、小暮栄一、石塚仁、岡田京子、岡野哲也
17:40 2D12 手洗いの物理力を最大活用する衣類洗浄技術…（花王）○小島喜宏、（岐阜市立女子大）太田幸一、（花王）小暮栄一、石塚仁、岡田京子、岡野哲也

6月9日（金）

テキスタイルサイエンス

【座長】西村敏典（信州大）
9:30 3D01 大学生が求める洋服の機能性…（神戸学院大・経営）○赤幸恵
9:50 3D02 若者のボタンかけに及ぼす操作方向、高経寸法、身頃安定性の影響…（信州大学・教育）○福田典子
10:10 3D03 寝具帯と寢具との関係…（信州大・繊維）○吉田宏昭、上条正義
【座長】吉田宏昭（信州大）
10:30 3D04 寝具内温度・湿度が入眠時の温熱快適感に及ぼす影響…（信州大・繊維）○上野貴之、川原明彦、新見嘉崇、西村直美、金井博事、西村松典
10:50 3D05 筋骨格シミュレータを用いた動作快適性の解析…（信州大・繊維）○塚場洋輔、（信州大学・理工）徳竹歩、（信州大学・IFES）乾滋
【座長】福田典子（信州大）
11:10 3D06 仮想空間における布モデルの操作…（信州大・繊維）○細引拓人、（信州大・IFES）乾滋、（信州大・繊維）塚場洋輔
11:30 3D07 DFSを用いた中空構造繊維の設計とシミュレーションの検討…（信州大学・理工）○林香澄、（信州大・繊維）森川英明、村上春江
11:50 3D08 結特性に基づいた繊維物性予測…（信州大学・理工）山本航、（信州大・IFES）〇乾滋、（信州大・繊維）塚場洋輔

E会場（4階 406室）

6月7日（水）

繊維・高分子材料の創製

【座長】吉田裕宏（安房大）
10:20 1E02 同時酸化-crysta3による植物高分子成分の利用…（農工大・工）○斎藤一洋、（森林総研）大塚寛一郎、中村雅成
10:40 1E03 ナノシートからなる中空状炭素繊維の作製…（信州大学・総合工）○亀村憲一、服部義之
6月8日(木)

縄維・高分子材料の機能

【座長】富永洋一(農工大)
14:00 2E01 立体規則性ポリメタクリル酸メチルプラシを用いた高分子材料の機能分離(九州大・工)○佐藤雅司、(九州大・工、九大・先研)平井俊之、(九州大・工)田中敏二
14:20 2E02 構造キラリティーを制御した高分子膜の表面特性(九州大・工)○大場正之介、(九州大・統合新領域)春齋滋村、(九州大・工)田中敏二
14:40 2E03 非溶媒界面におけるポリマー製造に特徴あるバイオサイエンス特性(九州大・工)○松野健生、(平田厚、(高エネ研)山田慎史、住友コム工業)皆川康広、(九州大・工)田中敏二
15:00 2E04 ガラス繊維のシンボウ処理における樹脂相変性領域と材料特性に及ぼす影響(三重工大・工)○鈴田信也、(メジショーテクノ)大西照宏
15:20 2E05 表面修飾シリカナノ粒子含有PIM-1複合膜の気体透過メカニズムの解析(神奈川大)○三上英昭、(工藤英貴、田中正、山登正文、川上浩良
15:40 2E06 高分子系気体分離膜における不純物の影響(名工大・工、名古屋工大)○横橋真二、(名工大・BASE)荻野賢司、(名古屋工大)Sandra Kentish
【座長】兼橋真二(農工大)
16:00 2E07 細孔状高分子の核磁気共鳴法で求める気体拡散係数(名工大・工、名古屋工大)○宮田雅美、吉田明道
16:20 2E08 異なる凝集構造に変化させたPMMAのNMR法で評価された自由体積評価(名工大、工)○西口拓里、吉村明美
16:40 2E09 PVA系モノマーを用いた新規PVA系イオン交換膜の成膜条件と膜特性との関係(名工大・工)水野泰子、(名工大・工)○近藤正、安川政宏、(東工大・工学)清野史雄、松本英俊
【座長】北川充(名工大)
17:00 2E10 リチウムイオン伝導性ナノファイバ―フリームワークを用いた高分子材料の機能分離(名工大・工)○加藤芳夫、渡辺信、田中正、川上浩良
17:20 2E11 リチウムイオン伝導性ナノファイバ―複合膜の作製と二次電池応用(名工大・工)○中澤慧、渡辺信、田中正、川上浩良
17:40 2E12 エチレンオキシド/エチレングリコール共重合体型高分子電解質の電気化学特性(名工大・BASE)○富永洋一、森岡孝至

6月9日(金)

縄維・高分子材料の機能

【座長】常田優子(農工大)
9:30 3E01 ポリ(3-アルキルチオフェン)薄膜の光電荷生成に及ぼす側鎖アルキル基の偶奇効果(信大・工、繊維)○金澤健、(福岡大、工)
10:30 3E04 熱処理効果の低下による防犯服生地の含水性が寄与する水蒸気蒸発の研究(信大・繊維)○水澤聖佳、(長崎県、松本英俊)
10:50 3E05 防護服上に高液性が付着・着火した際に熱伝達の評価と熱衝撃への影響(信大・繊維)○堀口拓也、(名工大)、渡辺信、(工藤英貴、松本英俊)
11:10 3E06 新規耐熱性繊維FAP 97繊維についての研究(静岡工大)○角谷真也、(静岡工大)、遠藤了慶
3E07 (キャンセル)
11:30 3E08 リバースエンジニアリングを介した次世代防犯服の耐熱設計手法の開発(信大・繊維)○村本倉平、(信大・繊維)、名工大、(名工大)森岡孝至

F会場(3階 302会議室)
6月7日(水)

成形・加工・紡糸

【座長】伊藤浩志(山形大)
10:00 1F01 シクロデキストリン不織布の結晶性制御(信大・繊維)○横山健太、杉山雄士、藤田憲、(吉田総合)
10:20 1F02 高速伝達性高耐熱性撚直高分子ナノファイバ―およびナノシートの作製と複合体フィルムへの応用(岡山大・自然)○鳴海秀司、(高田哲也)
【座長】金慶孝(信州大)
10:40 1F03 高圧加熱伝導パスを表面に有するナノ
ファイバープレームワーク複合電解質膜の作製と燃料電池特性評価（首都大・都市環境）
小橋隆広、牧之貴仁、田中博、川上浩美
11:00 1F04 熱可塑性エラストマー射出成形品の力学特性と高次構造の関係（山形大・有機）
玉村涼、伊藤浩志（東洋紡）山下勝久、野々村千里（マサカナルデザイン）小林卓哉
[座長 内田哲也（岡山大）]
11:20 1F05 熱インプリントによるPEIへの微細構造形成（山形大・有機）○穴戸原、根本昭彦、伊藤浩志
11:40 1F06 熱・UV・光混合インプリントによるレンズ表面への微細構造形成（山形大・有機）○大塚英彦、根本昭彦、石神明、伊藤浩志
[座長 宝田正（東工大）]
15:10 招待講演
1F07 溶融系紡績プロセスの多核マチルキシアミノ酸複合体形成のシミュレーション（京大・工）谷口貴之
15:50 1F09 ハイブリッド印刷を用いた電界紡織形成過程の直接観察と解析（東工大・物質、東芝）植松貴生、（東芝）内田健成、中川忠泰、（東工大・物質）○松本英茂
[座長 松本英茂（東工大）]
16:10 1F10 静電紡糸方法がポリ（フッ化ビニリデン）繊維の構造を与える影響（福井大・工）○浅井薫、藤池真理奈、島田直樹、中根幸治
16:30 1F11 セグメント化されたPPLA/PDLAブレンド溶融紡糸繊維の構造と特性（京工繊大・繊維）○山本真貴、（京工繊大・工芸、Inst. für Textiltechnik (ITA)）・RWTH-Aachen）Felix Merkord、（京工繊大・繊維）増谷一成、木村良智、（京工繊大・工芸）山田秀樹
16:50 1F12 CO2レーザ照射によるポリ乳酸樹脂フィルムの軸方向スケーリング（東京工業大）○Charinee Winotapun、Wataru Takarada、Takeki Kikutani
[座長 田中義弘（信州大）]
17:10 1F13 非晶性フィルムの多段伸長における三次元応力・光弾性挙動（東工大・物質）○根本憲実、鈴谷雄士、宝田正
17:30 1F14 ラプラス圧による孔径制御と電池セルパワーラーへの応用（岐阜大・工）○堀口結以、辻直平、高橋伸矢、武野明義
17:50 1F15 イオン液体とブロックポリマーを用いた構造タンパク質複合材料の開発（鶴岡高専）○佐藤亜也、高橋健太郎、本間光夏、森永隆志、佐藤貴良
6月8日夜
染料・機能加工
[座長 廣垣和正（福井大）]
14:00 2F01 柔軟剤によるウール織物の毛羽発生への影響（文化学園大・服装）○楠本玲、（元文化学園大・生活環境）森有樹（文化学園大・服装）米山隆二
14:20 2F02 ラマン分光法による漂白処理した毛纖ケラチン繊維の内部構造変化の解析（東京家政大・家政）○古原久徳
[座長 葛原啓夫（東京家政大）]
14:40 2F03 シクロデキストリン包接化合物への超高圧印加にともなう構造変化とゲスト放出挙動（福井大・工）○久田研次、竹下享太、加藤千依、笠川幹明
15:00 2F04 有機酸吸着層とアルカンの相互作用による固体表面近傍の局所粘度の増大（福井大・工）○平田豊章、大澤拓也、伊藤実奈子、久田研次
15:20 2F05 超臨界二酸化炭素を媒体とした生着複合繊維へのPD酯類の注人・還元によるPD酯類の堆積（福井大・工）○巻谷和正、（福井大・工）谷川善義、田畑功、（福井大・産官学）黒照夫、（カジナリオン）遠藤隆平
[座長 吉田敏男（兵庫大）]
15:40 招待講演
2F06 環境に優しい染料加工（京工繊大・繊維）奥里里子
[座長 平田豊章（信州大）]
16:20 2F08 ナイロン6布帛の反応染料による染色性に及ぼすスラット織物の影響（福井大・工）○加藤恒樹、田延功、（福井大・産学官）黒照夫、（福井大・工）広垣和正、（倉敷繊織）西川高宏、杉山穂、鳥島裕裕、勝築洋
16:40 2F09 繊維上にディープコオーミングしたコロイド粒子の堆積構造に及ぼす繊維表面の特性の影響（福井大・工）○関口一樹、佐佐智浩、（福井大・工）中村栄二、田畑功、（福井大・工）広垣和正
[座長 久田研次（福井大）]
17:00 2F10 インゴワニ線の染色においてストライプは何故起こるか（東工大・名譽）○小見山二郎、（福井大・工）中根幸治、丹羽健二
17:20 2F11 天然色素においてはラッカーゼの効果（和洋女子大・家政）○長崎直子、（大阪府立大学・名）高橋徹

G会場（3階303室）
6月7日水
ソフトマテリアル
[座長 荒井薫（信州大）]
10:00 1G01 希奇系アミノ酸液晶分子間に見られるマチルキ INTERNATIONAL マチルキニング相転移（東工大・物質）○渡辺一樹、姜聖賢、戸木田雅利
10:20 1G02 全芳香族ポリアミド酸エステルの反応性液晶汎発動と熱依存動力学過程における配向解析（東工大・物質）○中田和幸、安藤健治、石松亮亮
10:40 1G03 高密度ポリマー表面におけるマチルキックス cucurbitorumの極端なコーニング強度（東工大・物質）○矢澤健太、岩田直人、戸木田雅利、（LGディスプレイ）佐藤治
[座長 戸木田雅利（東工大）]
11:00 1G04 かご型シルセスキオキサンを有する光応答性液晶ジブロック共重合体の光触起制御（名大院・工）大塚覚、原光生、（名大・VBL）○永野哲也、（名大院・工）関井宏
11:20 1G05 ステレオチック液晶塗料とかご型シルセスキオキサン塗料を持つラニュム共重合体のさまざまな塗装構造と制御（名大院・工）永井美織、原光生、（名大・VBL）○永野哲也、（名大院・工）関井宏

A18
6月8日㈫
ソフトマテリアル

【座長】 松田靖弘（静岡大）
14:00 2G01 ポリステレンラテックス水分散液の乾燥
散逸構造に対する偏析効果…（岐阜大・工）○伊達基貴、（岐阜大・工）木村浩、土田亮、（コロイド組織化学）久保恒之
14:20 2G02 種々の電場波形の交流電場印加に対する
スティープライン法水分散液の粘度変化動揺…（岐阜大・工）○可見友志、（岐阜大・工）木村浩、土田亮、（化学工学）河崎恵
14:40 2G03 小角広角X線散乱法によるハードク
リームモトリス系の微細構造の非線形依存性と硬度
変化の相関解明…（信州大・紡織）○皆川真秋、（資源生産）渡辺啓、宮川真紀代
【座長】 荒木潤（信州大）
15:00 招待講演
2G04 粒子共存物質中の高分子表面機能性
フィラーの研究…（東大・多研）有田稔
【座長】 宫崎（山形大）
15:40 2G06 ストレーンを基盤とする新規ハイドログ
ル化合物の開発…（信州大・総合工）○菅修一、（信州大・総合工）鈴木正浩、（工学）津田敬二
16:00 2G07 プロトピビューラインニング法による生
体適合性ヒドロゲルの微細加工…（量研機構・高
崎研）○長谷高志、木村典、出崎亮、山田尚人、
江夏昌史、佐藤隆博、石井保行、田口光正
16:20 2G08 ゲルマニウムテネブレートを用いた
多孔質ポリマー材料の作製および評価…（信州大
・総合工）○鈴木正浩、（信州大・総合工）鈴
木正浩、（工学）津田敬二
【座長】 長澤真風（量研機構）
16:40 2G09 結晶性ゲルの合成と物性評価…（山形大
・工）○宮城、毛利洋、宮崎療、酒井康平
17:00 2G10 ポリ乳酸ゲルのナノファイバー中での高
分子構造の構築…（静岡大・工）○松田靖弘、
芦沢宏樹、田坂茂
17:20 2G11 ゲルマニウムをベースとしたラジカ
シングレコンポジットの作製と評価…（信州大
・総合工）○今坂優大、（信州大・総合工）
鈴木正浩、（工学）津田敬二

6月9日㈬
ソフトマテリアル

【座長】 葦田大輔（九大）
9:30 3G01 堆積多糖類キサンタンの熱変性…再興
構造解析…（静岡大・工）○松田靖弘、杉浦史
忠、田坂茂
9:50 3G02 堆積多糖類キサンタンの熱変性…再興
分子量依存性…（静岡大・工）○松田靖弘、杉
浦史忠、奥村憲也、田坂茂
10:10 3G03 堆積多糖類キサンタンの模造繊維における
構造変化…（工学）Xue Bai, Xing Shi, 信川詩音、杉本英樹、中西英一、○戸板公弘
【座長】 田中敏昭（京工横大）
10:30 3G04 高分子材料の液状スフィンガリング
を利用した樹脂状ネットワークにおける結晶化
のパラメータ依存性…（九大・生産）北原なた
み、（九大・農）○蓑宮大輔、近藤哲男
10:50 3G05 メチルセルロース水溶液の両親媒性体
添加による塩析から塩析へのスイッチング現象
…（九大・化）西田幸子、森永秀俊、片山隆
（九大・原子炉）井上倫太郎、（同志社）貞包浩
一朗、（高エネ研）金谷利治、瀬戸秀紀
【座長】 西田幸子（京大）
11:10 3G06 ナノ粒子分散系のエレクトロロジー
と誘電特性…（京工横大・工）○田中克也、小
松原樹、西本美功、市川新、高崎隆、小林建樹
11:30 3G07 ロボットを用いた導帯構造を指向したイオン液
体型高分子ポリマー系と平滑膜の複合…（岡山
大）○荒船博之、本間幸治、上条利夫、森永隆
志、佐藤貴貴
11:50 3G08 走査フォース顕微鏡による双性イオン型
高分子電解質表面の凝集力の比較…（工学院大学・先
進工）○小林元成、松山義人、山口和男

H会場（3階307室）

6月7日㈭
繊維・高分子固体の物理

【座長】 阿部誠義（産総研）
15:30 1H08 ラミー麻縫系の引張強度に及ぼすマイグ
レーション構造の解明とマルコフ鎖シュミュ
レーション…（山口大・工）○松本佑紀、山崎悟
理、合田公一
15:50 1H09 炭素系ナノファイバーを添加したフッ素系

A19
エラストマーの力学的性質 (東工大院) ○久保譲 太、丸田良也、塚谷正俊、(タイキン工業) 野口剛
16:10 1H10 炭素繊維の表面状態が炭素繊維・ポリプロピレンの界面せん断強度に及ぼす影響 (福井 大・工) ○栗田大輔、(福井大院・工) 植松英之、伊 田秀一

[座長 猪股克弘(名工大)]
16:30 1H11 リサイクル炭素繊維の欠陥評価手法に関する提案 (名工大・工) ○入澤喜年、岩村亮佑、 PROGRAM新研、新竹社、田邊強
16:50 1H12 カーボンナノチューブを用いた炭素繊維複合材料の物性改善 (川崎総研) ○阿部誠之、友 納茂樹、山田健郎、岩本修
17:10 1H13 エレクトロスピニング法を用いた高配列・高配向ポリプロピレン酸ナノファイバーの製造 と力学的性質 (神戸大学・工) ○LEE Sunghin、 本郷千恵、西野孝

[座長 植松英之(福井大)]
17:30 1H14 野菜組合およびデコ類引放のアラクン連鎖結晶体の非導体 NMR 疎密構造解析 (農工大院・工、伊豆三井化学分析センター) ○亀谷俊彰、(農工大院・工) 青木昭宏、内藤晶、朝倉哲朗
17:50 1H15 コンピュータープロセスから製造されたバイオマスプラスチックの物理性 (名工大院・工) 岩直人、信川省吾、松本正樹、中西英二、○猪股 克弘、(高橋高等学校) 太田浩晃

6 月 8 日(木)
繊維・高分子固体の物理

[座長 宝田亘(東工大)]
14:00 2H01 In-situ ラマン分光法を用いたポリエチ レンの延伸過程における微視的変形挙動の解析 (金沢大学・自然) ○木村拓光、比江橋祐介、 新田晃平
14:20 2H02 分子量分布がアインソクタックポリプロピ レン水冷紡糸繊維の力学物性および熱機械物性におよぼす影響 (信州大・繊維) ○国光美音、豊田由、伊香谷敏文、金田孝、大越藤、(三井化学・プライムポリマー) 池田勝頼
14:40 2H03 フィルム・繊維の延伸過程におけるイン プロセス計測 (群馬大学・理工) ○上原宏樹、 山本健

[座長 石毛亮(東工大)]
15:00 2H04 アイオノマーの延伸特性とイオン凝集体のガラス転移温度の相関解明 (岐阜大・工) ○ 三輪洋平、神本聡、香水豊一
15:20 招待講演
2H05 テンダー X 線を用いた射出射出側散乱法による高分子薄膜の深さ分解構造解析 (名工大院・工) 山本勝彌

[座長 登村雅聡(京大・化研)]
16:00 2H07 可塑状態のエチレングリコールアルコール共 重合体中の気体の拡散特性 (名工大院・工) ○ 松下晴光、吉水正明
16:20 2H08 固体 NMR によるシングオタックポリス チレン結晶中の分子運動性評価 (名工大院・工) ○伊藤清美、吉水正明
16:40 2H09 破壊要因の異なるハニクム構造を形成 する液晶性ポリマーの構造と物性 (名工大院・工) 石田稔大、○吉水正明

[座長 古水広明(名工大)]
17:00 2H10 エチレングリコールアルコール共重合体の結晶化速度と相変化過程 (龍谷大・理工) ○西田 修悟、中村陽彦
17:20 2H11 結晶性結晶性高分子ポリマムにおける体積熱膨張と密度及び熱容量の相関 (東工大・物 質) ○石田亮光、増田俊宏、小崎緋子、藤原英 石、岡田朋大、齋藤明治
17:40 2H12 統合化晶化した架橋天然ゴムの表面自由エネルギー (京大・化研) ○登村雅聡、大上真平

6月9日(金)
繊維・高分子固体の物理

[座長 西辻祥太郎(山形大)]
9:30 3H01 アタクチックポリプロピレンの立体規則 連鎖での部分結晶化 (龍谷大・理工) ○西田幸 一郎、中村陽彦
9:50 3H02 熱分析によるシングオタックポリスチレン/クロロホルムゲル中の溶媒の凝集状態の解析 (龍谷大・理工) ○奥田勇助、中村陽彦
10:10 3H03 ナイロン 6のナノ粒子界面における凝集構造 (静岡大学・工) ○松本雅彦、松本清弘、田坂 萌
10:30 3H04 フッ化ビニリデン系ポリマーの銀界面 における構造 (静岡大学・工) ○大浦雄軽、岩本 宽太、松本清弘、田坂光

[座長 石毛亮(東工大)]
10:50 3H05 連鎖中にペチロ原子を含まない両端に バーフォロアイルキイ軸を有するポリエチレンの合成と結晶化 (岡山大学・環境) 大川雅弘、 ○山崎健、新史紀、木村邦生
11:10 3H06 剛直高分子(ポリパラフィレンテレフ タルアミド) 単結晶の熱処理による構造安定化 (岡山大学・自然) 岡原英ら、○内田哲也

[座長 木村邦生(岡山大)]
11:30 3H07 超臨界 CO₂下での熱処理によるポリ フッ化ビニリデンの結晶高次構造変化 (農工大院・工) ○松浦輝之、斎藤拓
11:50 3H08 熱点近傍での熱処理による LLDPE 結晶の高次構造制御 (農工大院・工) ○篠谷駿生、 斎藤拓

P会場(1階展示ホール)
ポスター発表
一般発表 P1
若手発表 P2

6 月 7 日(木)
Obligation Time
発表番号末尾が奇数: 12:00-12:40
発表番号末尾が偶数: 12:40-13:20

繊維・高分子材料の創製

1P101 洗衣ラジカル重合の重組開始剤としてのジェチ ルメチオキシボランの可能性 (東北生活文化大) ○菅野修一
1P102 特殊なラジカル重合開始剤としてのイミダゾリ ウムイオン液体の特性 (東北生活文化大) ○菅野修一
1P103 特殊なラジカル重合開始剤としてのピス (トリフルオロメチルスルホン) の検討 (東北文化大学) オマ野修一

1P104 様々な重合条件下における1-エチル-3-メチルイミダゾリウムイオン水溶液の液体の可能性について…(東北文化大学) オマ野修一

1P205 アミノ酸-N-カルボキシル無水物の反応性の再検討 80. DL-アミノ酸 NCA の相相重合の結果品造…(福島大・総合理工) 金澤等。(総合理工) 鳳坊文一

1P206 柔軟なα-アルキルアミノ酸ファイバーの作製(信州大・総合理工) 佐山善明、(信州大・総合理工)村上幸、(日本バイオリン株式会社) 小坂祐輔、多羅尾隆

1P207 エレクトロスピニング法を用いたナノ多孔質水酸アタミン繊維の作製…(信州大・総合理工) 石田周平、(信州大・IFES) 揚上将規

1P208 ホウ酸-ポリアクリル酸グリュアルの繊維化を利用した含化ホウ素前躯体の形成…(信州大・総合理工) 高橋茂顕、(信州大・IFES) 揚上将規

1P209 六官能単官能カルボン酸分子とポリプロピレン グリコールからなるポリマーの合成と性質…(岩手大・理工) 内田直樹、大森好行、芝崎二三

1P210 星型N-アルキルベンゼンアミド分子の構築とポ リプロピレンオキシドの共重合…(岩手大・理工) 佐藤芳彦、大森好行、芝崎二三

繊維・高分子材料の機能

1P111 マイクロドロップレット試験によるガラス繊維/ 樹脂界面角の細部的評価…(メイコーテック) 大西晃宏、(湘工大・工) 羽村信文

1P121 ポリ(3-ヘキシルオクチエン) 膜中の荷電移動に 及ぼす薄膜化の効果…(九大院・工) 大谷健、川口大輔、田中健二

1P123 化学的に安定な高分子の改質 87. 接着不可能で といわれる材料の接着力および CFRP 材料の接着性 改良…(福島大・理工) 金澤等。(総合理工) 服部文一

1P124 カーポーテク型高分子電解質の誘電緩和挙動…(農工大・BASE) 小林香織、高野洋一、(小林理研) 美玉秀和、川口和弘

1P125 三塩酸セロースセロロースナノウィスカー複 合膜の水蒸気透過性…(信州大院・理工) 鈴木信人、平田雄一

1P126 鈽氷化シクロデキストリンを用いた高機能材料 の開発…(信州大院・総合理工) 杉山善雄、吉田裕安材

1P127 Magnesium ion-conductive poly (ethylene carbonate)-based solid electrolytes…(農工大・BASE) 藤根阿也、有馬健太郎、Tominaga

1P128 グラフェンで修飾されたポリマーの合成とフォ トリラクトイプ材料への応用…(農工大・BASE) 福部大、加藤秀之、萩野賢司

繊維・高分子材料の物理

1P119 偏光蛍光発光を企図した高光性ポリオイミドの 設計と配向解析…(東工大・物質) 田中和幸、馬鹿利大、安藤慎治、石毛亮平

1P120 高速紡糸 PLA 繊維の特異な繊解挙動とそのキ ネティクス解析…(福島大) 福士夏実、古澤未来、(群馬大・理工) 小野里裕、花田好洋、(京工織) 高橋瑞、(東工大・理工) 自根要、(群馬大・理工) 河原豊、(東工大・理工) 鞠谷雄士、(京工織) 小林治樹、田中克実

1P121 シリコーン変性ポリソルボルネルを用いた配向 フィルムの構造解析…(信州大・総合理工) 田中慎 久、伊藤謙介、(信越化学) 田村裕昭、武田由利、(日大理工) 若杉幸雄

1P122 レーザー光照射によるPoly(phenylene sulfide) 繊維の短時間処理が繊維の構造・物性にお ぼす効果…(信州大学・繊維) 高坂邦史、駒村高 大、富澤雄、伊香敏敏、金塚孝、大越豊、(東 東繊維研究所) 勝田大士、船津義朗

1P123 Effect of spinning speed on fine structure and physical properties of PP/CL composite fiber…(信州大・先進繊維工学) Nabila Febriani, Takuya Shinagawa, Kyoung Hou Kim, Yutaka Ohkoshi

1P124 レーザー加熱延長されたポリ酢酸テトラフ レート (PET) モノラミンの構造と物性…(信州大・総合理工) 大矢利康、柳澤京太、鴨崎明、 伊香敏敏、金塚孝、大越豊、(帝人ノモリファ ムメントK) 高橋真一

1P125 テトラデキシルオキシカルボニル側鎖を有するポリ メチレンの主鎖直体規則性と相変化…(東工大・ 物質) 西村美帆子、相澤洋介、小清水昇、戸田 靖利

1P126 繊維・高分子材料と有機化合物の相互作用 25.ポ リマーの有機化合物吸着特性…(福岡大・理工) 稲田文、金澤等

1P127 無機フィラー添加の光重合性高分子の電場印加 による構造形成への電極形態の影響…(東工大・ 物質) 藤岡啓介、赤塚修一、浅井茂雄

1P128 超高分子量ポリテトラフルオロエチレン重合バ ドナーからの直接形成による結晶構造変化…(信 州大・繊維) 須田英男、信州大・IFES) 揚上 将規

1P129 テレフロコンプレックス結晶を含んだポリ乳 酸/ポリエチル系オゾン伝導性高分子ブレンド の相構造と電気的及び力学的性質…(東工大・物 質) 山田了輔、赤塚修一、浅井茂雄

成形・加工・紡糸

1P130 プレトン交換膜燃料電池のナノ拡散層における 炭素繊維の配向の効果…(信州大・繊維) 熊倉 健太、小山敬樹

1P131 イオン液体溶液より作製したアクリル繊維の フィブリル化挙動〜酢酸ビニルモノマーの 影響〜…(信州大・繊維) 山本栄子、田口実希、 後藤孝、(三菱レイヨン) 中山光、山下友義

1P132 電界紡糸イオン交換ナノファイバーを複合化し た高分子電解質薄膜の構造と物性…(東工大・物 質) 清野史孝、鴻福松一、芦沢聡、(山口大学・ 創成科学) 那加進、(東工大・物質) 林本英樹

1P133 レーザー加熱延長による繊維内部局部形成メ カニズムの解明…(信州大・繊維) 山崎秀徳、 鴨崎明、伊香敏敏、金塚孝、大越豊

1P134 尿素骨格を有する環境低分子化合物のナノファ イバー化…(信州大・総合理工) 宮澤幸樹、吉田裕
染色・機能加工

1P140 グリセリン酸化物で着色した羊毛の繊維物性…
（阪市工研）○大城晴一、村田正司
1P241 ポリプロピレンフィルムのアントラキノン系分散染料透過挙動…
（信州大学・理工）○清水夏弥、平田一雄

テキスタイルサイエンス

1P142 頭部被覆時の衣服気候に関する研究−スリル性と乳幼児の衣環境の着目…
（文化学園大・服装）○佐藤真理子、高木美希、松井有子、
西村光、光田由伽
1P143 腹面の摩擦が皮膚表面形状に及ぼす影響…
（文化学園大・服装）○松井有子、平川野利、佐藤真理子
1P144 体幹部圧迫時の生理応答に及ぼすアールコール摂取の影響…
（文化学園大・服装）○荒井美緒、佐藤真理子

天然繊維・生体高分子

1P145 羽毛ケラチン/木粉コンバウの成形と物性…
（群馬大・理工）○鳥越佳之、河原芳
1P246 カーボンアッシュエスケルの合成と物性評価…
（東大院・農）○村城賢佳、塚下隆広、石井大輔、
村井秀夫、岩田真優
1P247 ポリ[(R)-3-ヒドロキシブチレート]/ブレンドの構造と物性…
（東大院・農）○山本亮太、石井大輔、岩田真優、
（東京理科大・工）○大竹勝人
1P248 アセチル化フェルタ酸セロリースの合成と物性…
（東大院・農）○清水重信、石井大輔、小林和宏、
村井秀夫、岩田真優
1P249 カーボンアッシュ/長纖維複合エスケルの合成と物性…
（東大院・農）○坂井博明、長谷政央、竹村彰之

村井真雄

1P250 微生物産生ポリエチレントナノファイバーにおける細胞増殖性の評価…
（東大院・農）○町田大地、
石井大輔、村木光、竹村彰之

1P251 フルネック由来バイオベースシック塩基の重合…
（群馬大・理工）○林千里、
（群馬大・理工）○Ishida
1P252 LBL法を用いたキトサン-アルギン酸コペリクスの架橋な…
（群馬大・理工）○山本亮太、石井大輔、
1P253 セルロースナノファイバー界面の高密度カルボキシル基によるアセタールの酸加水分解反応…
（農業工程）○村井真雄、（九大農・農）○長谷政央、
北村卓也

ソフトマテリアル

1P154 銀鏡型液晶エラストマーのフレキソエレクトリック効果と焦電特性…
（東京工芸大学）○（東京工芸大学）○平野英一、
田中耕太、大谷有子、星野優香
1P255 ポリウレタン骨格を有するイオン液晶の流動性と配向挙動…
（大分大・理工）○渡辺浩太、（大分大・理工）
○関谷雅則、岩見裕子、田中充子
1P256 新規ストリオゾール高分子の光発性と金属イオンおよびアクセプター分子の認識に関する研究…
（東工大・物質）○永井良樹、佐藤剛志
1P257 Preparation and characterization of poly (ethylene carbonate)/poly(lactic acid) blends…
（農工大・BASE）○Nur Azrin Binti Ramlee、
富永洋一
1P258 小角広角X線散乱法によるジアルキルジメチルアンモニウム塩分散系が水中で形成する比較的な微細構造と分子構造に関する相互作用…
（信州大・農）○堂金未来、柳瀬慶一、（ライオン株）小倉卓、
戸掘雅彦、（信州大・農）佐藤高彰

バイオ・メディカルマテリアル

1P259 繊維状ウィスフルなようなる液晶性メオプレの分離特性評価…
（東工大・物質）○猪俣清彦、澤田敏樹、斎藤武
1P260 水分分散したシルクフィブロインの物性…
（信州大・農）○青木正朗、増田悠、（信州大・理工）
野木木本樹、（信州大・農）信州大・理工）
1P261 細胞核保存におけるシルクセリシオンの影響…
（信州大・農）○福田まり子、（信州大院）佐々木瑞樹、
（伊勢崎大学）○伊東豊章、（信州大・農）
1P262 Tyrを介した化学修飾によるシルクフィブロインの構造と機能特性の開発…
（農工大・工）○市田恒也、中澤靖文、（防衛大・応用）中澤智之、
浅野啓史
1P263 エレクトロスピニングによるセリシオン/キトサン複合スキャフォールドの開発…
（信州大院・総合理工）○西岡あさず、鶴島健太、柳橋竜香、寺本彰
セルロースナノファイバー

1P264 リグニン含有量を異にするセルロースから得られた各種ナノファイバーの構造と物性…（神戸大学・工）○村上大祐、松本拓也、大島智子、寺村浩、川口秀夫、荻野千秋、近藤昭彦、西野孝

繊維・高分子材料と放射光

1P165 放射光ラミノグラフィによる出土繊維製品の非破壊調査…（村岩研究）○大根正義、細川歩、（京工・京都大・奈文研）佐藤昌憲、（JASRI）星真良人

1P266 配向結晶化フィルム及び単結晶を用いたポリ[(R)-2-ヒドロキシブチレート]の結晶構造および高速構造解析…（東大・農）○金子はるひ、（東大・農・理研複研、JST-CREST）石井大輔、（東大・農・理研複研）木村聡、（東大・農・理研複研、JASRI、JST-CREST）加部泰三、（理研複研）引村孝明、高田昌樹、（東大・農・工、JST-CREST）松本謙一郎、大井俊彦、田口精一、（東大・農・理研複研、JST-CREST）岩田忠久

6月8日 招発番号末尾が奇数：12:30-13:10
発表番号末尾が偶数：13:10-13:50

論文賞受賞内容紹介

2P101 赤外分光法によるブリーチ処理毛髪に生じるシステムシックの評価…（神大・理）鈴木希望

2P102 Prevention of Aggregation of Pectin-Containing Cellulose Nanofibers Prepared from Mandarin Peel…（農大・理）中澤健介

2P103 Effect of Cross-Sectional Configuration on Fiber Formation Behavior in the Vicinity of Spinning Nozzle in Bicomponent Melt Spinning Process…（東大工）Yiwen Chen

奨励賞受賞内容紹介

2P104 レオロジーの視点に基づく繊維・高分子材料およびその成形加工プロセスの検討…（福井大）植松茂之

2P105 植物バイオマスを利用した新規機能性バイオベースポリマーの創製…（農工大）兼橋真二

2P106 繊維状ウイルスからなるソフトマテリアルの創製…（東大工）澤田敏樹

2P107 X線回折・散乱法を用いたバイオマスプラスチックの結晶多形と結合構造の解明…（東大工）丸林弘典

繊維・高分子材料の製造

2P201 結晶指数ポリアクリルプチオンの特性…（岩手大・工）○橋村明美、大石好行、芝崎拓二

2P202 ポリアクリルプチオンのアセチル側鎖濃度、側鎖長とミセル形成能の関係…（岩手大・工）○瀬戸彩佳、大石好行、芝崎拓二

2P203 植物バイオマスを用いた新規高分子複合材料の物性…（農工大・BASE）○五木秀春、久保田有紀、（農工大学工）敷木一洋、（森林総研）大塚祐一郎、中村雅幸、（農工大学工）高木正人

2P204 ビス[α-(ハロメチル)アクリル酸エステル]の付加・脱離反応を利用した不飽和ポリエステルの合成と応用…（信州大・繊維）○宮崎裕、高坂泰弘

2P205 アクリロイル基を有する環状ヘアセタールエステルを原料とするポリエステルの合成…（信州大・繊維）○松橋洋介、山下修司、高坂泰弘

2P206 成形性を向上させた新規重合法による高耐熱性剛直高分子架橋体フィルムの製作とその物性…（岡山大・工）○尾西直央、山中達郎、内田哲也

2P207 菊萄皮フィブリオン繊維の高機能化の試みとNMRキャラクタリゼーション…（農工大・工）○西村明生、松田裕生、朝倉哲也

2P208 エアギャップ紡糸法による有機-無機ハイブリッドチューブの形成…（福井大・工）○長川拓文、浅井華子、中村英治

繊維・高分子材料の機能

2P109 グラフェン含有コンポジット材料の作製とフィオトリファクトイブ効果…（農工大・BASE）○千葉勇、小河原里香、兼橋真二、萩野賢司

2P110 ポリ[3-トリオトキシシリン]の重合とポリチレンからなるブロック共重合体のガラス転移相における凝集構造…（東大工・理工）○吉田雅秀、岩田直人、戸田田雅利

2P111 単層カーボンナノチューブ（SWNTs）の非結合性架橋剤としてのポリ（ジェニルアミノストレン）-ポリ（ピニルスチレン）の合成…（農工大・BASE）○中村貴光、兼橋真二、名取至、萩野賢司

2P121 形状の異なるシリカナノ粒子を混合したポリイミド膜の気体透過機構の解析…（首都大・都市環境）○三上憲臣、児玉正博、山中正徳、川上浩美

2P123 リチウムイオン伝導性ナノファイバー複合絶縁材料からなる多層積層型全体二極構造の作製と評価…（首都大・都市環境）○相田勇太、田中雄、川上浩美

2P124 エレクトロスピニング法を用いたリチウムイオン検修性ナノファイバー化と二次電池用充電式応答…（首都大・都市環境）○中澤健介、工学部、川上浩美

2P125 PVA の難溶化…（信州大・繊維）○戸田隆一郎、（信州大）中村文武、（信州大・繊維）村上泰

繊維・高分子材料の物理

2P116 細胞種類による再生セルロース繊維のフィブリル化…（信州大・理工）○張佳平、山岸高貴、金子英夫、（信州大）後藤康夫

2P127 In-situ X線測定を用いたコモロマ量の異なるポリオキシメチレン・メチレンオキサイド共重合体の延伸・冷却過程の調査…（群馬大・理工）○奈良大樹、山下光之、上原宏樹、山下健、（三菱エンブラ）池田明治、長井聡

2P128 成形条件の異なる超高分子量ポリエチレンフィ
ルムの溶融延伸過程における in-situ X 線計測…(群馬大学・理工)〇清水由信、上野雅彦、上原宏樹、東山健、(東ソー)大西拓也、若林保武、稲富敏、阿部成彦

2P219 ポリ乳酸/天然由来フィラーコンポジットのフィラー分散性と物性…(東工大・物質)〇井口友利、赤坂修一、浅井茂雄

2P220 疲労が及ぼすアラミド繊維の力学的性質および微細構造への影響…(京工繊大・工)〇八木誠、澤森優也、杉村義明、鈴木章宏、田中克史、高崎綱、小林治樹

2P221 バルジ試験法を用いた Nylon 12 フィルムの力学特性評価および張出し変形挙動の解明…(九大・工)〇永野幸高、野崎修平、(九大・先導研)藤本綱、横町明俊、(九大・工、九大・先導研、WPI-PCNER)渡辺宏司、小椎尾隆、高原淳

2P222 メチル鎮長の異なる有芳香族ポリアミドの物性と構造解析…(群馬大学・理工)〇田中祐弥、永井大介、米山賢、上原宏樹、東山健

2P223 カーボンフィラー充填 PLLA/PDLA ブレンドの電気的性質の温度依存性…(東工大・物質)〇高山祐樹、赤坂修一、浅井茂雄

2P224 ポリ－4－メチルベンゼン 1 の気体収着特性の結晶化度と温度の依存…(名工大・工)〇野村優、吉水正明

2P225 水晶振動子による重合反応過程の粘弹性解析…(静岡大・工)〇野中啓徳、松原亮介、久保野敦史、(小島プレス工業㈱)田中貴章、辻朗

成形・加工・紡糸

2P228 レーザー印字装置による PET 繊維ウェブの作製とその二軸延伸…(京工繊大・工)〇徳田哲己、鶴田道、中島啓太、高崎綱、小林治樹、田中克史、(東工大・理工)宝田亘、神野雄士

2P229 イオン液体を溶媒とした再生シルクの作製と構造・物性…(信州大・理工)〇中込雅俊、山田洋平、(信州大・IFES)後藤康夫

2P230 導電性高分子による高分子電解質系導電性ナノファイバーの作製と構造…(福井大・工)〇大野貴信、波津光興、住友義一

2P231 カーボンナノチューブの長鎖化と炭素繊維表面への着付…(岐阜大・工)〇八代江介、玉置友祐、高橋伸雄、武野明義

2P232 (キャンセル)

2P233 1-ethyl-3-methylimidazolium diethylphosphate を溶媒とした再生セルロース繊維の特徴…(信州大・繊維)〇金子大陸、張佳平、山岸直貴、後藤康夫

染色・機能加工

2P134 媒染染色繊布のモデル複合処に対する除去特徴…(お茶女大)〇雨宮敬子、仲西正

2P135 含鋼媒染染色繊布のエタノール水溶液処理における酸化と吸着…(お茶女大)〇中島啓太、(お茶女大)雨宮敬子、仲西正

2P136 混合染料法により収縮をきたしたポリ乳酸繊維の染料化性に対する分散染料の吸着量変化…(東京家政学院大)〇花田朋美、鈴木里奈、山川優子

2P237 染色したセルロースパウダーの酸加水分解による着色セルロースナノウイイスカーの作製…(信州大・繊維)〇中谷碧、平田雄一

テキスタイルサイエンス

2P138 森林内照明光環境の季節変化…(信州大・理)〇松村哲也

2P239 X 線 CT を用いたニードルパンチ不織布の構造解析および物理評価…(信州大・繊維)〇尾家大資、中野光務吾、石川達也、金慶孝、大越豊

天然繊維・生体高分子

2P140 乳酸オリゴマーと種々のポリオールで構成されるセグメント化ポリウレタンの合成と特性…(京工繊大・繊維セ)〇山本真禎、(京工繊大・工芸)堀崎光、(京工繊大・繊維セ)増谷一成、木村良晴、(京工繊大・工芸)山田秀樹

2P141 フェルラ酸と炭素素の異なる脂肪族ヒドロキシ酸からなる交替共重合ポリエステルの合成と特性…(東工大・農)〇石井大輔、野田光太郎、竹村彰、岩田宏

2P242 ナノセルロースクラインゲルの植物油吸収材への応用…(神戸大・工)〇佐藤達哉、松本拓也、本郷光輝、西野孝

2P243 ストロンチウム吸着を目的としたアルミ酸繊維の調製…(関西大・化学物質工学)〇西田健亮、(関西大・理工)杜央加志(ダウニオン)、(株)株式会社キユーピー)大村剛久、山口悠、(関西大・化学物質工学)吉池哲也、田村裕

2P244 紫外線硬化性ケミカルナナートシェルリキッド (CNSL)ベース材料の作製…(農工大・BASE)〇加藤寛、窪井賢司、兼橋真二

2P245 リゲン由来のバイオポリマー材料の合成…(農工大・BASE)〇森田和司、荻野賢司、兼橋真二

2P246 異種イオン性キチンナノファイバーからの複合材料創製…(鹿児島大・理工)〇佐藤弘義、山元徳哉、門川淳一

2P247 アミロースのグラフト化によるキチンナノファイバーのナノネットワーク材料の創製…(鹿児島大学・理工)〇江頭正成、山元和哉、門川淳一

2P248 5-ヒドロキシメチルフルフラールを用いた界面
重綿合法による総合系高分子の合成…(農工大院・農)○鈴木善心、粕谷幸基
2P249 PHBH 繊維の微結晶核延伸法と多段延伸法による高強度化…(信州大院・繊維)○湯澤恒要、田中稔久
2P250（キャンセル）

ソフトマテリアル
2P151 しわ構造を有する親水性ポリイミド表面の調製とその表面特性解析…(工学院大学)○藤井元輝、小林佳宏、(産総研)鈴木航祐、大関拓哉、(工学院大・光工)山口晃亮、小林元康
2P152 グリセリンで誘起された家蚕フィルムの構造変化に関する固体NMR研究…(農工大院・工)○田制佑悟、平山善さき、朝倉啓郎
2P153 荷電PVAゲルの直接染料水溶液中における膨潤および染料収着…(お茶女大学)○田代幸、(お茶女大)小林敏敏、仲野正
2P254 イオン液体型厚膜ポリマー/ソラスアルミナ複合系における潤滑特性評価…(鶴岡大学)○石黒達也、荒船博之、上條利夫、平間彩夏、森永隆志、佐藤貴哉
2P255 粒子共存制御ラジカル重合法による活性化フィラー充填体質膜の調製と評価…(山形大院・理工)○志賀慶治、(山形大・工)高橋佑樹、(東北大・多研)有田光彦、(山形大・工、山形大・有機エレクトロニクス研究センター)増原和人
2P256 水晶振動子を用いたチキンロビーニ性ポリ硫酸ゲルの粘弹性測定における振動時間依存性…(信州大院・工)○清水満斗、稲石勝典、松原亮介、久保野敦史

バイオ・メディカルマテリアル
2P157 染色した毛髪ケラチンフィルムを利用した色落ちの評価…(信州大・繊維)○藤井敏弘、林香、今井美沙季、伊藤弓子、森川英明、(テック技阪)和田潤
2P158 毛髪ケラチンフィルムを用いた光照射が引き起こすダメージの検出…(信州大・繊維)○伊藤弓子、林香、森川英明、藤井敏弘、(テック技阪)和田潤
2P259 シルクリブロイン/ポリエチレンカーボネット複合膜の生分解速度制御…(農工大院・BASE)○菅野愛、米澤麗、富永洋一、(農工大院・工)中澤靖元
2P260 2位緩和NMRを用いたポリ(N-イソプロピルアクリルアミド)水溶液のプルーゲル転移における水分子の運動特性評価…(農工大院・工、筑三化学分析センター)○亀谷俊輔、(筑三化学分析センター)関根崇史、(千葉大学・工)大谷貴洋、(徳島大学・工)野平朋広、右近浩一、(農工大院・工)朝倉啓郎
2P261 組織工学材料への応用を目指した野菜シルクフィブロインフィルムの構造-物性解析…(農工大院・工)○青木明子、(農研機構)亀田恒徳、吉岡太陽、(農工大院・工)中澤靖元

セルロースナノファイバー
2P162 セルロースナノフィルム/アンパイロ粒子複合体の調製と立体安定化…(信州大院・理工)飛田泰宏、浦田貴之、(信州大・繊維、信州大・IFES)○荒木潤
2P163 セルロースナノフィルムのアンパイロ粒子担持と良分散性の両立…(信州大院・理工)浦田貴之、(信州大・繊維、信州大・IFES)○荒木潤

繊維・高分子材料と放射光
2P164 放射光施設フォトンファクトリーの小角散乱ビームラインの現状…(高エネ研・PF)○高木秀彰、清水伸隆、五十嵐教之、森丈晴、藤澤慎也、米澤健人、永谷康子、谷田部景子、高橋正剛、(三菱電機SC)大田浩正
2P265 超小角X線散乱(USAXS)による繊維構造形成過程の解析…(信州大・繊維)○安藤幸、大根田俊、富澤達、伊香良敏文、金慶孝、大越水(東リサーチセンター)岡田一幸、(高輝度光科学研究センター)増永啓雄、(高エネ研)吉谷利治、(東レ・繊維研究所)勝田大士、船津義嗣

公設試験機関 施設および研究紹介
6月7日(水)・8日(木)、P会場1階展示ホール

KP-1 福岡県工業技術センター
KP-2(地独)東京都立産業技術研究センター
KP-3 栃木県産業技術センター 繊維技術支援センター
KP-4 滋賀県東北部工業技術センター
KP-5 岐阜県産業技術センター
KP-6 岡山県工業技術センター
KP-7 岐阜県繊維工業試験場
KP-8 山梨県産業技術センター 富士技術支援センター
KP-9 茨城県工業技術センター 繊維工業指導所
平成 29 年度 第 47 回繊維学会夏季セミナー
「繊維科学の岐路に向けて」

趣 旨：本年度の夏季セミナーは東海支部で担当し、「繊維科学の岐路に向けて」と題して、岐阜市で開催いたします。本セミナーを日本の繊維産業の一大集積地である東海で開催するにあたって、繊維業界、さらにモノづくりを取り巻く国内外の現状を鑑み、今後の技術戦略について学び、今まさに岐路に立つ繊維科学の今後のあり方について考える場を設けたいという趣旨のもと企画しました。1 日目は、名和昆虫博物館館長名和哲夫氏、東レ株式会社 A&A センター・アドバンスドコンポジットセンター所長西崎昭彦氏、信州大学学長渡田州博氏の特別講演を行い、2 日目以降は、開催テーマの下、新進気鋭の研究者の方々に、3 つのテーマセッション "岐路に向けて" "車と繊維" "IoT と繊維"に加えて、新素材、バイオサイエンス、ソフトウェアリウスの分野における講演を行います。1 日目の夕方には恒例の懇親会を開催し、2 日目のポスターセッションの際にはコーヒーの香りを楽しみながら、講師と参加者の皆様に気軽に交流し、親睦を深めて頂きます。最終日の午後には、岐阜の企業を見学するエクスカーションも企画しています。夏季セミナーの開催時期は、地震の開催時期であると同時に「繊維信州公・岐阜入場・岐阜命名 450 年」の記念事業も開催されています。岐阜の夜も深くから岐阜駅周辺に移動しております。新しい岐阜をお楽しみください。最新の情報の収集ならびに意見交換の場をとることを祈念し、皆様のご来場をお待ちしています。

日 時：平成 29 年 8 月 8 日(水)～10 日(金)
場 所：みんなの森 さぐメデイアコスモス
〒500-8076 岐阜県岐阜市司町 40 番地 5
TEL : 058-265-4101、URL : http://www.mediacosmos.jp/cosmos/

（交通）JR 岐阜駅または名鉄岐阜駅より徒歩約 25 分、バスでお越しの場合 JR 岐阜駅または名鉄岐阜駅より「メディアコスモス前」または、「市民会館・裁判所前」バス停下車すぐ

定 員：250 名
参加費(消費税込)：

<table>
<thead>
<tr>
<th></th>
<th>個人会員</th>
<th>預貯・助倉会員</th>
<th>一般</th>
</tr>
</thead>
<tbody>
<tr>
<td>大学・官公庁</td>
<td>25,000 円</td>
<td>25,000 円</td>
<td>28,000 円</td>
</tr>
<tr>
<td>企 業</td>
<td>35,000 円</td>
<td>35,000 円</td>
<td>38,000 円</td>
</tr>
<tr>
<td>学 生</td>
<td>8,000 円</td>
<td></td>
<td>10,000 円</td>
</tr>
</tbody>
</table>

懇親会費(消費税込)：
大学・官公庁・企業 7,000 円
学生 3,000 円
会場 岐阜都ホテル（http://www.miyakohotels.ne.jp/gifu/）
*懇親会参加申込み方法：参加登録申込み時に懇親会参加の有無を選択してください。

事前参加申込期間：登録開始までしばらくお待ちください。
平成 29 年 5 月 26 日(金)～平成 29 年 7 月 14 日(金)
*当日参加も承ります。その際の参加費は、それぞれ「一般」の金額となります。

参加費振込先：参加費は現金書留又は、銀行振込でお支払いください。
*振込手数料はご負担をお願い致します。現金書留または銀行の控えをもって、本会からの領収書に代えさせていただきます。
①現金書留郵送先：〒141-0021 東京都品川区上大崎 3-3-9-209 繊維学会事務局 宛
②銀行口座：三菱東京 UFJ 銀行 目黒駅前支店 普通口座 4287837 一般社団法人 繊維学会
エクスカーション ～岐阜を知る～

日 時：8月10日(木) 13:00～16:30

定 員：40名程度

参加費：3,000円/(参観料、貸切バス移動含む)※参加費は、当日現地にてお支払いください。
お申込：参加のお申し込みは7月14日(金)までに参加申し込み用紙にご記入のうえ、メールにてsummer2017@fiber.or.jpお申し込みください。

スケジュール：ぎふメディアコスモス(12:40)⇒岐阜県議会⇒名和昆虫博物館⇒JR岐阜駅(16:30)

研究発表募集：(発表申込開始までしばらくお待ちください。)
*ポスター発表募集します。年齢制限はありません。
*開催日に35歳未満の学会員の場合、ポスター賞の対象になります。
*発表申込/予稿募集のいずれも専用のWEBから発表1件ごとに登録/投稿ください。

発表申込締切：平成29年6月23日(金)

予稿募集提出締切：平成29年7月7日(金)

問合せ先：〒141-0021 東京都品川区上大崎3-3-9-208 一般社団法人 繊維学会 夏季セミナー係
TEL:03-3441-5627 FAX:03-3441-3260 E-mail:summer2017@fiber.or.jp

実行委員会

実行委員長：仲井朝美（岐阜大）
副実行委員長：魚津吉弘（三菱ケミカル株）、土田亮（岐阜大）

実行委員：青山博之（金城学院大）、猪股克弘（名工大）、入澤寿平（名大）、大島直久（東海寮）、大谷章夫（京工摂）、太田幸一（岐阜女短）、木村浩（岐阜大）、香出健司（ユニチカ株）、澤渡千枝（静岡大）、上甲長平（熊山大）、鈴木吉之（浜松工業技術支援センター）、鈴村浩之（竹本油脂）、高橋雛矢（岐阜大）、武野明義（岐阜大）、田崎茂（静岡大）、田代孝二（豊工大）、千波誠（㈱カネカ）、寺本好邦（岐阜大）、内藤光史（岐阜大）、成澤達弥（KBセーレン株）、林浩司（岐阜県産業技術センター）、増田雅幸（三重大）、松岡敏生（三重県工業研究所）、森俊夫（岐阜大）、山本周治（あいち産業科学技術総合センター）、吉本広明（名工大）

事務局：野々村弘人、山本恵美

問合せ先：一般社団法人繊維学会 夏季セミナー係
summer2017@fiber.or.jp
〒141-0021 東京都品川区上大崎3-3-9-208 一般社団法人 繊維学会夏季セミナー係
TEL:03-3441-5627 FAX:03-3441-3260
平成29年度 繊維基礎講座

― せんいの製造過程の基礎知識とアパレル業界の現状を2日で学ぶ ―

繊維学会では毎年、企業の新入社員や新しく繊維系に関わられる方、また学部学生、大学院生に対して、繊維についての製造工学、加工、繊製、評価まで一貫して理解していただくために繊維基礎講座を開催しています。

今年度は糸、紡績、織物、編物、不織布、染色、アパレルと、繊維製品の製造過程の基礎をしっかりと学ぶ講演会として企画しました。大学や企業の現場で繊維関連の教育・指導に携わっております方にも大いに役立つものと思います。初日の講座終了後には講師との交流会も開催しますので、ぜひご参加ください。

主催：(一社)繊維学会

日時：平成29年7月13日（水）、7月14日（金）

場所：東京工業大学 キャンパス・イノベーションセンター東京(国際会議室)
〒108-0023 東京都港区芝浦3-3-6 TEL:03-5440-9020
（アクセス）JR山手線・京浜東北線田町駅芝浦口から徒歩1分
都営地下鉄浅草線・三田線 三田駅から徒歩7分

プログラム

7月13日（水）
10:00〜11:00 合成繊維の紡糸・延伸 東京工業大学 宝田 直
11:00〜12:00 紡績 村田機械㈱ 松本龍守
12:00〜13:00 ～昼食～
13:00〜14:00 新JIS L0001の共通認識と取扱い表示記号の運用について
(一財)ニッセンケン品質評価センター 山本雅彦
14:00〜15:00 高機能繊維 共立女子大学 村瀬浩貴
15:00〜15:15 休憩
15:15〜16:15 不織布 日本不織布協会 矢井田 修
16:15〜17:15 アパレル業界の現状と模索 文化学園大学 河本和郎

7月14日（金）
10:00〜11:00 繊物 (地税)東京都立産業技術研究センター 岩崎謙次
11:00〜12:00 編物 (一社)日本繊維技術士センター 岩上 厚
12:00〜13:00 ～昼食～
13:00〜14:00 技術が支えた日本の繊維産業 京都工芸繊維大学 松下義弘
14:00〜15:00 クレーム事例 (一財)カケンテストセンター 乾 明子
15:00〜15:15 ～休憩～
15:15〜16:15 染色 京都工芸繊維大学 安永秀計

（諸般の都合により講演内容・講演時間が変更になることがあります。ご了承ください）

参加費：企業会員（含む維持・拠点会員）24,000円、企業非会員 29,000円、大学官公庁関係会員 17,000円、大学官公庁非会員 22,000円、学生会員 5,000円、学生非会員 8,000円（消費税込み）

申し込み：当学会ホームページよりお申込みください。（請求書・領収書が必要な方はその旨ご連絡ください）

問い合わせ先：〒141-0021 東京都品川区上大崎3-3-9-208
(一社)繊維学会 TEL:03-3441-5627, FAX:03-3441-3260
E-mailoffice@fiber.or.jp ホームページ：http://www.fiber.or.jp/
第46回「感性研究フォーラム」講演会
ウエルネスと感性

主催：纖維学会研究委員会「感性研究フォーラム」
協賛：一般社団法人 日本繊維製品消費科学会、一般社団法人 日本色彩学会、一般社団法人 色材協会、一般社団法人 日本家政学会

日時：平成29年6月17日（土）13:00～16:00
場所：大阪府立男女共同参画・青少年センター（ドーンセンター）5階セミナー室

ドーンセンターへのアクセス：http://www.dawncenter.or.jp/top/index.jsp

13:00 受付
13:30 開会挨拶 神戸松蔭女子学院大学 徳山孝子 （研究委員会「感性研究フォーラム」委員長）

プログラム：
13:30～14:30 コミュニケーションI（講演）
「この時代のキーワード「ウエルネス」」（石スタイリングオフィス・コア代表 高田敏代）
社会や経済の混乱に不安を持ち、地球環境への愛いが広がる中、生活市場の大きなキーワードは「ウエルネス」です。生活者は、身の回りのモノの質を重視するとともに、環境保護に対する意識を持ち前向きに考え取り組んでいます。また一方で、ダイエットやアンチエイジング、未病やストレスへの対策など、自己の内面への関心を高めています。この時代を健康に豊かに生活していくための身体や心にまつわる新商品やサービスについて解説するとともに、「ウエルネス」な感性とはどういったものなのかを、具体的に掘り下げて考えていくと思います。

14:30～15:30 コミュニケーションII（講演）
「日本初の化粧品ウェア誕生」 株式会社デサント 藤原一彦

株式会社デサントは、日本で初めて化粧品として販売できる、女性用スポーツアイテム「Uroute by shiseist (ウルート バイ シセイスト)」を2016年4月より発売した。「ウルート」は、帝人フロンティア社が開発した日本初の化粧品ウェア「ラフィナン」を応用したスポーツアイテムである。素肌に直接着用することで、肌を弱酸性に保ち、肌荒れを防ぎ、はり、ツヤ、潤いを与える。化粧品ウェアの開発と今後についてを語る。

15:30～15:40 休憩

15:40～16:30 コミュニケーションIII（パネルディスカッション）
司会 武庫川女子大学名誉教授 横川公子

パネリスト

①スタイリングオフィス・コア代表 高田敏代
②デサント R&Dセンター 藤原一彦
（地場）大阪産業技術研究所 吉村由利香

定員：50名
参加費：一般3,000円、学生1,000円、研究委員会会員・協賛団体関係者1,000円
申込：参加申込は必要ありません。当日、受付でお支払いください。
問合せ先：〒141-0021 東京都品川区上大崎3-3-9-208
一般社団法人 繊維学会(内)感性研究フォーラム事務局
TEL: 03-3441-5627 FAX: 03-3441-3260 E-mail: office@fiber.or.jp
第 59 回公開講演会（繊維技術）
主催：日本技術士会近畿本部 繊維部会
共催：日本繊維技術士センター（JTCC）、
日本染色加工同業会
日時：平成29年5月26日（日）13:30～16:30
場所：大阪産業創造館5階 研修室 E
プログラム：
演題1「小動物の足裏の巧妙さとその模倣—粘着テープへの応用—」
大阪大学 工学研究科 平原佳織
演題2「蛍光・化学発光タンパク質の開発と社会実装への展開」
大阪大学 産研副所長 永井健治
申込・問合せ先：日本繊維技術士センター（JTCC）本部
（大阪市中央区霞ヶ関町3-4-9）
TEL：06-6484-6506
E-mail：jtcc@nifty.com

平成29年度「化学物質の有害性評価」
～初心者のための基礎から学ぶ病理学的評価～
主催：（地）神奈川県立産業技術総合研究所
開催期間：平成29年5月17日（水）～平成30年2月15日（木）
場所：かながわサイエンスパーク内講義室
（川崎市高津区坂戸4-2-1）
募集人数・対象者：30名程度、化学物質を製造または使用しているメーカー等に所属し、化学物質のヒト有害性評価について、病理学の基礎から学びたい方。
受講料：無料
カリキュラム構成等の詳細は、（地）神奈川県立産業技術総合研究所教育研修グループ
高木友子にお問い合わせください。
TEL：044-819-2033
E-mail：tagakai@newkast.or.jp

プラスチック成形加工学会
第18回成形加工実践講座シリーズ
（金型・CAE編）
—つなげよう、CAE技術と金型づくり—
主催：プラスチック成形加工学会
日時：平成29年7月21日（日）
場所：スクエア荏原 大会議室

プログラム：講演5件
詳細はプラスチック成形加工学会のホームページを参照ください。

申込・問合せ先：
ホームページの本講演会会告の申込フォームから申し込みください。
（一社）プラスチック成形加工学会 事務局
〒141-0032 東京都品川区大崎8-8-5
グリーンプラザ五反田第2 205
TEL：03-5436-3822 FAX：03-3779-9698

17-1 エコマテリアル研究会
「触媒が先導する新しいバイオプラスチックの世界」
主催：高分子学会 エコマテリアル研究会
日時：平成29年7月21日（日）13:00～17:00
場所：東京大学農学部フードサイエンス棟中島徹一郎記念ホール
プログラム：
・運営委員長挨拶 京都工芸繊維大学 山根秀樹
・非可食バイオマスの高効率変換にに関する革新的触媒の開発と実用化研究の橋渡し
産業総合研究所 根本耕司
・固体酸塩基触媒による糖類からの有用フラン類合成
北海道大学 中島清隆
・環境適応型プロセスによる植物高分子成分抽出およびその利用
産業総合研究所 敷中一洋
・ポリ乳酸の高性能化・高機能化に向けたこれまでの研究開発紹介 ネオマテリアル㈱ 増谷一成
・ガルカンスクラーレを利用してした高分子多糖類の試験管内合成と熱可塑性プラスチック化
東京大学 木村 聡

申込・問合せ先：
（一財）高分子学会 エコマテリアル研究会
〒104-0042 東京都中央区入船3-10-9
新富町ビル
TEL：03-5540-3770 FAX：03-5540-3737

第52回夏季講座
未来社会を支える新材料・新技術
主催：（一社）日本ゴム協会
日時：平成29年7月24日（日）、25日（火）
場所：講座 かながわ労働プラザ
The 15th International Conference on Advanced Materials (IUMRS-ICAM 2017)

主催：(一社)日本MRS
日時：平成29年8月27日㈫～9月1日㈰
場所：京都大学 吉田キャンパス
プログラムの詳細は http://www.iumrs-icam2017.org を参照ください。
問合せ先：(一社)日本MRS 事務局
〒231-0002 横浜市中区海岸通3-9
横浜ビル507D
TEL：045-263-8538
E-mail：meetings@mrs@j.org

プログラム：23日（一日目） 特別講演、一般講演、ポスター発表
24日（二日目） 特別セッション、一般講演
プログラムの詳細はホームページ http://www.jscc.kenkyuukai.jp を参照ください。
問合せ先：琉球大学農学部 平良東紀
（第31回大会運営委員長）
TEL：098-895-8802
E-mail：2017jscc@amb-ryukyu.net

東京家政大学選任教員公募

職名・人員：准教授または教授
（条件によっては限界付）1名
所属：家政学部 服装美術学科
専門分野：服装文化分野
応募資格：（1）修士以上の学位を有するか、それと同等の能力を有する者
（2）教育研究に熱意を持ち、担当授業科目に関して教育や実践に実績のある方
（3）大学院を担当できる方
採用年月日：平成30年4月1日
待遇：本学の給与規程による
応募締切：平成29年7月20日㈭必着
問合せ先：提出書類、選考方法、書類提出先などの募集に関する問合せ先
東京家政大学 教育支援センター
服装美術学科 学科事務
TEL：03-3961-2240
E-mail：y kobay as@ tokyo-kase i.ac.jp

第31回日本キチン・キトサン学会大会

主催：日本キチン・キトサン学会
日時：平成29年8月23日㈭、24日㈮
場所：沖縄コンベンションセンター
（沖縄県宜野湾市塔志喜4-1-1）
Journal of Fiber Science & Technology (JFST)
「平成 29 年度年次大会発表論文特集号」のお知らせ（第 3 回）

平成 29 年 6 月 7 日（日）～9 日（火）に平成 29 年度年次大会を東京都江戸川区のタワーホール船堀で開催いたします。

今年度は初めての試みとして、繊維学会論文誌 Journal of Fiber Science & Technology (JFST) に、年次大会特集号を以下の 2つの分野を中心に企画いたしました。
1. セルロースファイバー（特別セッション 1）
2. 繊維・高分子材料と放射光（特別セッション 2）

上記の 2 セッションで発表をされた発表はもとより、一般発表分野で関連する発表をされた場合も投稿を歓迎致します。具体的には、3. 繊維・高分子材料と物理で放射光を用いた構造解析について発表した場合、「7. 天然繊維・生体高分子」でセルロースファイバーに関する発表した場合、など広くとらえているだければ幸いです。

皆様のご積極的なご投稿をお待ち申し上げております。

投稿に関してご不明な点は、遠慮なく、下記担当者までメールにてお問い合わせください。

本特集号への論文投稿に関する特典とスケジュールは下記のとおりです。

特典：投稿料の半額を、年次大会実行委員会よりサポートします。

投稿・査読・掲載スケジュール：
論文投稿締切：平成 29 年 6 月 30 日
採択論文掲載：平成 29 年 12 月号
論文種類等：一般論文、ノート、総説のいずれでも構いません
論文言語：日本語、英語（こちらの方が好ましい）のいずれでも構いません

担当者：斎藤 雄之（年次大会副実行委員長）
東京大学 大学院農学系研究科 生物材料科学専攻
E-mail: asaitot@mail.ecc.u-tokyo.ac.jp TEL: 03-5841-8199